

Mechatronic Documentation

On this page you can find all the information about the Mechatronic Workbench.
You have some tutorials where you can learn how to use it, as well as the documentation of all the 3D models
and the functions that have been designed.

Table Of Contents

	Introduccion
	Mechatronic

	How it works

	History

	Install

	Tutorial
	YouTube Tutorials in Spanish

	Tutorial CAD 1 - Create part

	Tutorial CAD 2 - Crate a system

	Wiki
	3D Model library

	Systems library

	Functions Library

	UML

	3D model details

	Functions details

Indices and tables

	Index

	Module Index

	Search Page

Introduccion

Mechatronic

Mechatronic is a Workbench for FreeCAD that allows the modification of parametric models that includes and
simplify the assembly and composition. It also provides a library of functions with which to generate new
parametric models to be included in the Workbench.

How it works

Mechatronic is designed for two different users:

1. Basic User: User without CAD or Programming knowledge who needs to make a design.
For this user is the graphic part. The steps to follow would be:

	Select the part

	Enter the values you want to use

	You already have the part you want.

Note

See the Tutorial section for more details

Additionally, this user may want to combine parts with each other. For this purpose, there is the Assembly module 1
that allows the placement of some pieces with respect to others

2. Advanced user: User with programming knowledge who wants to design parameterizable 3D models.
This user has the Functions Library 2 to make 3D models in a simple way.
You can consult the class design (UML) if you wish to better understand the operation

History

Mechatronic Workbench started with the Filter Stage project. In this project, we designed a support for the
sample holder of a microscope to the URJC.
In order to be able to modify the design and adapt it to the required dimensions, we chose to make a parametric design.
Parametric design requires the use of a programming language to describe the model, in this case we use Python.

Based on this parameterizable design, a final degree work was conceived to create a Workbench
where the Filter Stage parameters could be modified from the FreeCAD interface.

It was decided to improve this first Workbench by adding designs commonly used in mechatronic systems and
functions to facilitate the placement of these designs

Footnotes

	1

	The Assembly module will be upgraded

	2

	The functions library is in process

Install

[image: _images/Download-FreeCAD-brightgreen.svg]
 [https://www.freecadweb.org/downloads.php][image: _images/60317562f42661d03424b9560f1850c5dca42a14.svg]
 [https://raw.githubusercontent.com/davidmubernal/Mechatronic_Documentation/master/Mechatronic.zip]To install the Mechatronic Workbench you need FreeCAD [https://www.freecadweb.org].

Note

Works on FreeCAD 0.19

After installing the program, there is two ways to install the Workbench:

	Use the addon manager. In FreeCAD, go to the menu Tools/Addon manager.
In the Addon Manager choose Configuration from de upper rigth side. In the new window add https://github.com/davidmubernal/Mechatronic to the Custom Repositories

	Download Mechatronic Workbench from the following file [https://raw.githubusercontent.com/davidmubernal/Mechatronic/master/Mechatronic.zip].
Take the Mechatronic folder from the Mechatronic.zip file and put it in the Mod folder inside the FreeCAD installation folder.
The default path of FreeCAD is:

	S.O.

	Folder

	WINDOWS

	C:/Program Files/FreeCAD 0.19/Mod

	MAC

	/Applications/FreeCAD 0.19/Mod

After completing these steps, the Workbench will be listed in the FreeCAD Workbench

Tutorial

Note

Work in progress

YouTube Tutorials in Spanish

There are diferents tutorials availables in Youtube [https://www.youtube.com/playlist?list=PLJAGaIjAPiFIkdTY4OOOegZvmtumLL3OK].

 Wiki

Wiki

Note

This is a basic view of the Wiki

3D Model library

Mechatronic

Shaft Holder

	Size

	Low profile: Only in size 8

[image: Shaft Support Size 8]
[image: Shaft Support Size 8 Low Profile]

Details

	Sk_dir(size[, fc_axis_h, fc_axis_d, …])

	SK dimensions: dictionary for the dimensions .

Idler Holder

	Size of the profile on which it is mounted

	Bolt metrics

	Height

	Position of the limit switch sensor

	Height of the limit switch sensor

The model will be modified for greater efficiency

Details

	IdlePulleyHolder(profile_size, pulleybolt_d, …)

	Creates a holder for a IdlePulley.

Limit Switches Holder

	Type

	Rail distance

[image: Holder for endstop with a 30mm rail]
[image: Holder for endstop type d3v with a 25mm rail]

Details

	SimpleEndstopHolder(d_endstop[, rail_l, …])

	Very simple endstop holder to be attached to a alu profile and that can be adjusted .

Hall stop

	Width

	Thikness

	Metric nut

	Profile size

	Reinforce

[image:]

Details

	hallestop_holder([stp_w, stp_h, base_thick, …])

	

Bracket

	Type: 3 options

	Size first profile

	Size second profile

	Thickness

	Metric nut first profile

	Metric nut second profile

	Number of nuts

	Distance betwen nuts

	Type of hole

	Reinforcement: first type only

	Flap: second type only

	Distance between profiles: third type only

[image: Bracket 30x30mm with holes for M6 bolt]
[image: Bracket 30x30mm with 15mm of rail for M6 bolt]
[image: Bracket 30x30mm with 20mm of rail for M6 bolt]

Details

	AluProfBracketPerp(alusize_lin, alusize_perp)

	Bracket to join 2 aluminum profiles that are perpendicular, that is, they are not on the same plane .

	AluProfBracketPerpFlap(alusize_lin, alusize_perp)

	Bracket to join 2 aluminum profiles that are perpendicular, that is, they are not on the same plane It is wide because it has 2 ears/flaps? on the sides, to attach to the perpendicular profile .

	AluProfBracketPerpTwin(alusize_lin, …[, …])

	Bracket to join 3 aluminum profiles that are perpendicular, that is, they are not on the same plane to the perpendicular profile .

Motor holder

	Size

	Height

	Thickness

[image: Motor Holder to Nema 17 width 25mm of rail]
[image: Motor Holder to Nema 17 width 35mm of rail]

Details

	NemaMotorHolder([nema_size, wall_thick, …])

	Creates a holder for a Nema motor

Motor

	Size

	Height

	Shaft height

	Shaft radius

	Shaft radius base

	Shaft height base

	Chamfer radius

	Bolt deep

	Bolt outside

	Pulley pitch

	Pulley teeth

	Pulley top flange

	Pulley bot flange

	Position in axis d

	Position in axis w

	Position in axis h

	Placement

[image: Nema 17, 32mm hight]
[image: Nema 17, 20mm hight]

Details

	NemaMotorPulleySet([nema_size, base_l, …])

	Set composed of a Nema Motor and a pulley

Lin bear house

	Type

[image: Thin linear bear house 1 rail LM8]
[image: Bottom part of thin linear bear house 1 rail LM8]

Details

	ThinLinBearHouse1rail(d_lbear[, …])

	Makes a housing for a linear bearing, but it is very thin and intented to be attached to one rail, instead of 2 it has to parts, the lower and the upper part .

	ThinLinBearHouse(d_lbear[, fc_slide_axis, …])

	Makes a housing for a linear bearing, but it is very thin and intented to be attached to 2 rail it has to parts, the lower and the upper part .

	LinBearHouse(d_lbearhousing[, …])

	Makes a housing for a linear bearing takes the dimensions from a dictionary, like the one defined in kcomp.py it has to parts, the lower and the upper part .

	ThinLinBearHouseAsim(d_lbear[, fc_fro_ax, …])

	There are

Filter holder

	Length

	Width

[image: Filter holder]

Details

	PartFilterHolder([filter_l, filter_w, …])

	Integration of a ShpFilterHolder object into a PartFilterHolder object, so it is a FreeCAD object that can be visualized in FreeCAD

Tensioner

	Belt hight

	Base width

	Thickness

	Metric nut

[image: Idler pulley tensioner]

Details

	TensionerSet([aluprof_w, belt_pos_h, …])

	Set composed of the idler pulley and the tensioner

Belt clamp

	Type

	Length

	Width

	Metric nut

[image: Simple belt clamp]
[image: Double belt clamp]

Details

	BeltClamp(fc_fro_ax, fc_top_ax[, base_h, …])

	Similar to shp_topbeltclamp, but with any direction, and can have a base Creates a shape of a belt clamp.

	DoubleBeltClamp([axis_h, axis_d, axis_w, …])

	Similar to BeltClamp, but in two ways Creates a shape of a double belt clamp.

Aluminium profile

	Section

	Length

[image: Aluminium profiles width differents lengths]

Details

	PartAluProf(depth, aluprof_dict[, xtr_d, …])

	Integration of a ShpAluProf object into a PartAluProf object, so it is a FreeCAD object that can be visualized in FreeCAD Instead of using all the arguments of ShpAluProf, it will use a dictionary

Linear Guide

	Type:

	SEBW16

	SEB15A

	SEB8

	SEB10

	Position in axis d

	Position in axis w

	Position in axis h

	Placement

[image: Linear Guide SEBW16]

Details

	PartLinGuideBlock(block_dict, rail_dict[, …])

	Integration of a ShpLinGuideBlock object into a PartLinGuideBlock object, so it is a FreeCAD object that can be visualized in FreeCAD Instead of using all the arguments of ShpLinGuideBlock, it will use a dictionary

Bolts, Nuts & Washers

	Type

	Metric

	Bolt length

[image: Bolts of differents sizes]
[image: Nuts of differents sizes]
[image: Washers of differents sizes]

Details

	Din934Nut(metric[, axis_d_apo, h_offset, …])

	Din 934 Nut

	Din125Washer(metric, axis_h, pos_h[, tol, …])

	Din 125 Washer, this is the regular washer

	Din9021Washer(metric, axis_h, pos_h[, tol, …])

	Din 9021 Washer, this is the larger washer

	Din912Bolt(metric, shank_l[, …])

	Din 912 bolt.

Optical

TubeLense

	Length

	Placement

[image: TubeLense 15mm]
[image: TubeLense 30mm]

Details

	SM1TubelensSm2(sm1l_size[, fc_axis, …])

	Creates a componente formed by joining: the lens tube SM1LXX + SM1A2 + SM2T2, so we have:

LCPB1M Base

	Placement

[image: Lcpb1mBase]

Details

	lcpb1m_base([d_lcpb1m_base, fc_axis_d, …])

	Creates a lcpb1m_base for plates side, it creates from a dictionary

CageCube

	Type:

	CageCube

	CageCubeHalf

[image: CageCube]
[image: CageCubeHalf]

Details

	f_cagecube(d_cagecube[, axis_thru_rods, …])

	Creates a cage cube, it creates from a dictionary

	f_cagecubehalf(d_cagecubehalf[, axis_1, …])

	Dreates a half cage cube: 2 perpendicular sides, and a 45 degree angle side.

Plate

	Plate dictionary:

	Lb1cm_Plate

	Lb2c_Plate

	Lcp01m_plate

	Placement

[image: Lb1cm_Plate]
[image: Lb2c_Plate]
[image: Lcp01m_plate]

Details

	Lb1cPlate(d_plate[, fc_axis_h, fc_axis_l, …])

	Creates a LB1C/M plate from thorlabs. The plate is centered

	Lb2cPlate(fc_axis_h, fc_axis_l[, cl, cw, …])

	Same as plate_lb2c, but it creates an object.

	lcp01m_plate([d_lcp01m_plate, fc_axis_h, …])

	Creates a lcp01m_plate side.

ThLed30

	Placement

[image: ThLed30]

Details

	ThLed30([fc_axis, fc_axis_cable, pos, name])

	Creates the shape of a Thorlabs Led with 30.5 mm Heat Sink diameter The drawing is very rough .

PrizLed

	Placement

[image: PrizLed]

Details

	PrizLed([fc_axis_led, fc_axis_clear, pos, name])

	Creates the shape of a Prizmatix UHP-T-Led The drawing is very rough, and the original drawing lacks many dimensions .

BreadBoard

	Length

	Width

	Placement

[image: BreadBoard 99x99mm]

Details

	f_breadboard(d_breadboard, length, width[, …])

	
	param d_breadboard

	Dictionary with the values

Systems library

Filter Stage

	Move distance

	Filter length

	Filter width

	Base width

	Tensioner stroke

	Tensioner thickness

	Metric nut

	Motor size

	Length rail motor holder

	Motor holder thickness

[image: Filter Stage Picture]

Functions Library

fcfun

	NutHole(nut_r, nut_h, hole_h, name[, extra, …])

	Adding a Nut hole (hexagonal) with a prism attached to introduce the nut.

	add2CylsHole(r1, h1, r2, h2, thick[, …])

	Creates a piece formed by 2 hollow cylinders

	add3CylsHole(r1, h1, r2, h2, rring, hring, thick)

	Creates a piece formed by 2 hollow cylinders, and a ring on the side of the larger cylinder

	addBolt(r_shank, l_bolt, r_head, l_head[, …])

	Creates the hole for the bolt shank and the head or the nut Tolerances have to be included

	addBoltNut_hole(r_shank, l_bolt, r_head, …)

	Creates the hole for the bolt shank, the head and the nut.

	addBox(x, y, z, name[, cx, cy])

	Adds a box, centered on the specified axis x and/or y, with its Placement and Rotation at zero.

	addBox_cen(x, y, z, name[, cx, cy, cz])

	Adds a box, centered on the specified axis, with its Placement and Rotation at zero.

	addCyl(r, h, name)

	Add cylinder

	addCylHole(r_ext, r_int, h, name[, axis, h_disp])

	Add cylinder, with inner hole:

	addCylHolePos(r_out, r_in, h, name[, …])

	Same as addCylHole, but avoiding the creation of many FreeCAD objects

	addCylPos(r, h, name[, normal, pos])

	Same as addCyl_pos, but avoiding the creation of many FreeCAD objects

	addCyl_pos(r, h, name[, axis, h_disp])

	Add cylinder in a position.

	add_fcobj(shp, name[, doc])

	Just creates a freeCAD object of the shape, just to save one line

	aluprof_vec(width, thick, slot, insquare)

	Creates a wire (shape), that is an approximation of a generic alum profile extrusion .

	calc_desp_ncen(Length, Width, Height, vec1, vec2)

	Similar to calc_rot, but calculates de displacement, when we don’t want to have all of the dimensions centered First vector original direction (x,y,z) is (1,0,0) Second vector original direction (x,y,z) is (0,0,-1) The arguments vec1, vec2 are tuples (x,y,z) but they may be also FreeCAD.Vectors .

	calc_rot(vec1, vec2)

	Having an object with an orientation defined by 2 vectors the vectors a tuples, nor FreeCAD.Vectors use the wrapper fc_calc_rot to have FreeCAD.Vector arguments First vector original direction (x,y,z) is (1,0,0) Second vector original direction (x,y,z) is (0,0,-1) we want to rotate the object in an ortoghonal direction.

	calc_rot_z(v_refz, v_refx)

	Calculates de rotation like calc_rot.

	edgeonaxis(edge, axis)

	It tells if an edge is on an axis

	equ(x, y)

	Compare numbers that are the same but not exactly the same

	fc_calc_desp_ncen(Length, Width, Height, …)

	Same as calc_desp_ncen but using FreeCAD.Vectors arguments

	fc_calc_rot(fc_vec1, fc_vec2)

	Same as calc_rot but using FreeCAD.Vectors arguments

	fc_isonbase(fcv)

	Just tells if a vector has 2 of the coordinates zero so it is on just a base vector

	fc_isparal(fc1, fc2)

	Return 1 if fc1 and fc2 are paralell (colinear), 0 if they are not

	fc_isparal_nrm(fc1, fc2)

	Very similar to fc_isparal, but in this case the arguments are normalized so, less operations to do.

	fc_isperp(fc1, fc2)

	Return 1 if fc1 and fc2 are perpendicular, 0 if they are not

	fillet_len(box, e_len, radius, name)

	Make a new object with fillet

	filletchamfer(fco, e_len, name[, fillet, …])

	Fillet or chamfer edges of a certain length, on a certain axis and a certain coordinate

	fuseshplist(shp_list)

	Since multifuse methods needs to be done by a shape and a list, and usually I have a list that I want to fuse, I make this function to save the inconvenience of doing everytime what I will do here Fuse multiFuse

	get_bolt_bearing_sep(bolt_d, hasnut, lbearing_r)

	same as get_bolt_end_sep, but when there is a bearing.

	get_bolt_end_sep(bolt_d, hasnut[, sep])

	Calculate Bolt separation

	get_fc_perpend1(fcv)

	gets a ‘random’ perpendicular FreeCAD.Vector

	get_fclist_4perp2_fcvec(fcvec)

	Gets a list of 4 FreCAD.Vector perpendicular to one base vector fcvec can only be: * (1,0,0) * (0,1,0) * (0,0,1) * (-1,0,0) * (0,-1,0) * (0,0,-1)

	get_fclist_4perp2_vecname(vecname)

	Gets a list of 4 FreCAD.Vector perpendicular to one vecname different from get_fclist_4perp_vecname For example: .

	get_fclist_4perp_fcvec(fcvec)

	Gets a list of 4 FreeCAD.Vector perpendicular to one base vector fcvec can only be: * (1,0,0) * (0,1,0) * (0,0,1) * (-1,0,0) * (0,-1,0) * (0,0,-1)

	get_fclist_4perp_vecname(vecname)

	Gets a list of 4 FreCAD.Vector perpendicular to one vecname for example: .

	get_fcvectup(tup)

	Gets the FreeCAD.Vector of a tuple

	get_nameofbasevec(fcvec)

	From a base vector either: (1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), (0,0,-1) Gets its name: ‘x’, ‘y’,….

	get_positive_vecname(vecname)

	It just get ‘x’ when vecname is ‘x’ or ‘-x’, and the same for the others, because some functions receive only positive base vector

	get_rot(v1, v2)

	Calculate the rotation from v1 to v2 the difference with previous verions, such fc_calc_rot, calc_rot, calc_rot is that it is for any vector direction.

	get_tangent_2circles(center1_pt, center2_pt, …)

	Returns a list of lists (matrix) with the 2 tangent points for each of the 2 tangent lines .

	get_tangent_circle_pt(ext_pt, center_pt, …)

	Get the point of the tangent to the circle

	get_vecname_perpend1(vecname)

	Gets a perpendicular vecname

	get_vecname_perpend2(vecname)

	Gets the other perpendicular vecname (see get_vecname_perpend)

	getfcvecofname(axis)

	Returns the FreeCAD.Vecor of the vector name given

	getvecofname(axis)

	Get axis name renunrs the vector

	regpolygon_dir_vecl(n_sides, radius, …)

	Similar to regpolygon_vecl but in any place and direction of the space calculates the vertexes of a regular polygon.

	regpolygon_vecl(n_sides, radius[, x_angle])

	Calculates the vertexes of a regular polygon.

	rotateview([axisX, axisY, axisZ, angle])

	Rotate the camara

	shpRndRectWire([x, y, r, zpos])

	Creates a wire (shape), that is a rectangle with rounded edges.

	shp_2stadium_dir(length, r_s, r_l, h_tot, h_rl)

	Makes to concentric stadiums, useful for making rails for bolts the length is the same for both.

	shp_aluwire_dir(width, thick, slot, insquare)

	Creates a wire (shape), that is an approximation of a generic alum profile extrusion.

	shp_belt_dir(center_sep, rad1, rad2, height)

	Makes a shape of 2 tangent circles (like a belt joining 2 circles).

	shp_belt_wire_dir(center_sep, rad1, rad2[, …])

	Makes a shape of a wire with 2 circles and exterior tangent lines check here [https://en.wikipedia.org/wiki/Tangent_lines_to_circles] It is not easy to draw it well rad1 and rad2 can be exchanged, rad1 doesnt have to be larger.

	shp_bolt(r_shank, l_bolt, r_head, l_head[, …])

	Similar to addBolt, but creates a shape instead of a FreeCAD Object Creates a shape of the bolt shank and head or the nut Tolerances have to be included if you want it for making a hole

	shp_bolt_dir(r_shank, l_bolt, r_head, l_head)

	Similar to shp_bolt, but it can be done in any direction Creates a shape, not a of a FreeCAD Object Creates a shape of the bolt shank and head or the nut Tolerances have to be included if you want it for making a hole

	shp_boltnut_dir_hole(r_shank, l_bolt, …[, …])

	Similar to addBoltNut_hole, but in any direction and creates shapes, not FreeCAD Objects Creates the hole for the bolt shank, the head and the nut.

	shp_box_dir(box_w, box_d, box_h[, …])

	Makes a shape of a box given its 3 dimensions: width, depth and height and the direction of the height and depth dimensions.

	shp_box_dir_xtr(box_w, box_d, box_h[, …])

	Makes a shape of a box given its 3 dimensions: width, depth and height and the direction of the height and depth dimensions.

	shp_box_rot(box_w, box_d, box_h[, axis_w, …])

	Makes a box with width, depth, heigth and then rotation will be referred to axis_w = (1,0,0) and axis_nh = (0,0,-1).

	shp_boxcen(x, y, z[, cx, cy, cz, pos])

	Adds a shape of box, referenced on the specified axis, with its Placement and Rotation at zero.

	shp_boxcenchmf(x, y, z, chmfrad[, fx, fy, …])

	Same as shp_boxcen but with a chamfered dimension

	shp_boxcenfill(x, y, z, fillrad[, fx, fy, …])

	Same as shp_boxcen but with a filleted dimension

	shp_boxcenxtr(x, y, z[, cx, cy, cz, xtr_nx, …])

	The same as shp_boxcen, but when it is used to cut.

	shp_boxdir_fillchmfplane(box_w, box_d, box_h)

	Creates a box shape (cuboid) along 3 axis.

	shp_cableturn(d, w, thick_d, corner_r, …)

	Creates a shape of an electrical cable turn, in any direction But it is a shape in FreeCAD See function wire_cableturn .

	shp_cir_fillchmf(shp[, circen_pos, fillet, …])

	Fillet or chamfer edges that is a circle, the shape has to be a cylinder

	shp_cyl(r, h[, normal, pos])

	Same as addCylPos, but just creates the shape

	shp_cyl_gen(r, h[, axis_h, axis_ra, …])

	This is a generalization of shp_cylcenxtr.

	shp_cylcenxtr(r, h[, normal, ch, xtr_top, …])

	Add cylinder, can be centered on the position, and also can have an extra mm on top and bottom to make cuts

	shp_cylfilletchamfer(shp[, fillet, radius])

	Fillet or chamfer all edges of a cylinder

	shp_cylhole(r_ext, r_int, h[, axis, h_disp])

	Same as addCylHole, but just a shape

	shp_cylhole_arc(r_out, r_in, h[, axis_h, …])

	This is similar to make shp_cylhole_gen but not for a whole, just an arc.

	shp_cylhole_bolthole(r_out, r_in, h[, …])

	This is a generalization of shp_cylholedir and shp_cylhole Makes a hollow cylinder in any position and direction, with optional extra heights, and inner and outer radius, and various locations in the cylinder

	shp_cylhole_gen(r_out, r_in, h[, axis_h, …])

	This is a generalization of shp_cylholedir.

	shp_cylholedir(r_out, r_in, h[, normal, pos])

	Same as addCylHolePos, but just a shape Same as shp_cylhole, but this one accepts any normal

	shp_extrud_face(face, length, vec_extr_axis)

	Extrudes a face on any plane

	shp_extrud_face_rot(face, vec_facenormal, …)

	Extrudes a face that is on plane XY, includes a rotation

	shp_face_lgrail(rail_w, rail_h[, axis_l, axis_b])

	Adds a shape of the profile (face) of a linear guide rail, the dent is just rough, to be able to see that it is a profile .

	shp_face_rail(rail_w, rail_ws, rail_h[, …])

	Adds a shape of the profile (face) of a rail

	shp_filletchamfer(shp, e_len[, fillet, …])

	Fillet or chamfer edges of a certain length, on a certain axis and a certain coordinate

	shp_filletchamfer_dir(shp[, fc_axis, …])

	Fillet or chamfer edges on a certain axis

	shp_filletchamfer_dirpt(shp[, fc_axis, …])

	Fillet or chamfer edges on a certain axis and a point contained in that axis

	shp_filletchamfer_dirpts(shp, fc_axis, fc_pts)

	Fillet or chamfer edges on a certain axis and a list of point contained in that axis

	shp_filletchamfer_dirs(shp, fc_axis_l[, …])

	Same as shp_filletchamfer_dir, but with a list of directions

	shp_hollowbelt_dir(center_sep, rad1, rad2, …)

	Makes a shape of 2 tangent circles (like a belt joining 2 circles).

	shp_nuthole(nut_r, nut_h, hole_h[, xtr_nut, …])

	Similar to NutHole, but creates a shape, in any direction.

	shp_regpolygon_dir_face(n_sides, radius[, …])

	Similar to shp_regpolygon_face, but in any direction of the space makes the shape of a face of a regular polygon

	shp_regpolygon_face(n_sides, radius[, …])

	Makes the shape of a face of a regular polygon

	shp_regprism(n_sides, radius, length[, …])

	Makes a shape of a face of a regular polygon

	shp_regprism_dirxtr(n_sides, radius, length)

	Similar to shp_regprism_xtr, but in any direction makes a shape of a face of a regular polygon.

	shp_regprism_xtr(n_sides, radius, length[, …])

	makes a shape of a face of a regular polygon.

	shp_rndrect_face(x, y[, r, pos_z])

	Same as shpRndRectWire

	shp_stadium_dir(length, radius, height[, …])

	Makes a stadium shape in any direction

	shp_stadium_face(l, r[, axis_rect, pos_z])

	Same as shp_stadium_wire, but returns a face

	shp_stadium_wire(l, r[, axis_rect, pos_z])

	Creates a wire (shape), that is a rectangle with semicircles at a pair of opposite sides.

	shp_stadium_wire_dir(length, radius[, …])

	Same as shp_stadium_wire but in any direction Also called discorectangle .

	vecname_paral(vec1, vec2)

	Given to vectors by name ‘x’, ‘-x’, …

	wire_beltclamp(d, w, corner_r, conn_d, conn_sep)

	Creates a wire following 2 pulleys and ending in a belt clamp But it is a wire in FreeCAD, has no volumen .

	wire_cableturn(d, w, corner_r, conn_d, conn_sep)

	Creates a electrical wire turn, in any direction But it is a wire in FreeCAD, has no volumen .

	wire_lgrail(rail_w, rail_h[, axis_w, …])

	Creates a wire of a linear guide rail, the dent is just rough, to be able to see that it is a profile

	wire_sim_xy(vecList)

	Creates a wire (shape), from a list of points on the positive quadrant of XY the wire is simmetrical to both X and Y .

UML

The UML (Unified Modeling Language) is the base diagram for software development.
It is a visual description of the relationships between class objects.

[image: _images/UML_simplificado.jpg]

The main class will be “Obj3D” which will contain the basic information of the model:

	Internal axis:

	axis_d

	axis_w

	axis_h

	Children’s dictionary:

	dict_child

	dict_child_sum

	dict_child_res

The rest of the classes that generate the different 3D models will be part of the Obj3D class

3D model details

Mechanical

	
class comps.Sk_dir(size, fc_axis_h=FreeCAD.Vector, fc_axis_d=FreeCAD.Vector, fc_axis_w=FreeCAD.Vector, ref_hr=1, ref_wc=1, ref_dc=1, pillow=0, pos=FreeCAD.Vector, wfco=1, tol=0.3, name='shaft_holder')

	SK dimensions:
dictionary for the dimensions

mbolt: is mounting bolt. it corresponds to its metric
tbolt: is the tightening bolt.
SK12 = { 'd':12.0, 'H':37.5, 'W':42.0, 'L':14.0, 'B':32.0, 'S':5.5,
 'h':23.0, 'A':21.0, 'b': 5.0, 'g':6.0, 'I':20.0,
 'mbolt': 5, 'tbolt': 4}

 fc_axis_h
 :
 ___:___ _______________________________ tot_h
 | ___ |
 | / \ | __________ HoleH = h
 | ___/ | __
 __| |__ /| __
 |_____________|/ __ TotD = L ___________________

 ___:___ ___
 | ___ | |...|
 | / 2 \ | 3 1 |.....> fc_axis_d
 | _*_/ | |...|
 ____| |____ |___|
8_:5_____4_____::_|..fc_axis_w 6_7_|....... fc_axis_d
: : : :
:... tot_w: :...:
 tot_d

	Parameters

	
	fc_axis_h (FreeCAD.Vector) – Axis on the height direction

	fc_axis_d (FreeCAD.Vector) – Axis on the depth (rod) direction

	fc_axis_w (FreeCAD.Vector) – Width (perpendicular) dimension, only useful if I finally
include the tightening bolt, or if ref_wc != 1

	ref_hr (int) –
	1: reference at the Rod Height dimension (rod center):
points 1, 2, 3

	0: reference at the base: points 4, 5

	ref_wc (int) –
	1: reference at the center on the width dimension (fc_axis_w)
points: 2, 4,

	0: reference at one of the bolt holes, point 5

	-1: reference at one end. point 8

	ref_dc (int) –
	1: reference at the center of the depth dimension
(fc_axis_d) points: 1,7

	0: reference at one of the ends on the depth dimension
points 3, 6

	pillow (int) –
	1 to make it the same height of a pillow block

	pos (FreeCAD.Vector) – Placement

	wfco (int) –
	1 to create a FreeCAD Object

	tol (float) – Tolerance of the axis

	name (str) – FreeCAD Object name

	Returns

	FreeCAD Object of a shaft holder

	Return type

	FreeCAD Object

	
class comps.PartAluProf(depth, aluprof_dict, xtr_d=0, xtr_nd=0, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, axis_h=FreeCAD.Vector, pos_d=0, pos_w=0, pos_h=0, pos=FreeCAD.Vector, model_type=1, name='')

	Integration of a ShpAluProf object into a PartAluProf
object, so it is a FreeCAD object that can be visualized in FreeCAD
Instead of using all the arguments of ShpAluProf, it will use
a dictionary

	Parameters

	
	depth (float) – (depth) length of the bar, the extrusion

	aluprof_dict (dictionary) – Dictionary with all the information about the profile
in kcomp.py there are some dictionaries that can be used, they are
not exact – same as ShpAluProf

	xtr_d (float) – If >0 it will be that extra depth (length) on the direction of axis_d

	xtr_nd (float) – If >0 it will be that extra depth (length) on the opositve direction of
axis_d can be V0 if pos_h = 0

	axis_d (FreeCAD.Vector) – Axis along the length (depth) direction

	axis_w (FreeCAD.Vector) – Axis along the width direction

	axis_h (FreeCAD.Vector) – Axis along the width direction

	pos_d (int) – Location of pos along axis_d (see drawing)

	0: start point, counting xtr_nd,
if xtr_nd == 0 -> pos_d 0 and 1 will be the same

	1: start point, not counting xtr_nd

	2: middle point not conunting xtr_nd and xtr_d

	3: middle point conunting xtr_nd and xtr_d

	4: end point, not counting xtr_d

	5: end point considering xtr_d

	pos_w (int) – Location of pos along axis_w (see drawing). Symmetric, negative indexes
means the other side

	0: at the center of symmetry

	1: at the inner square

	2: at the interior side of the outer part of the rail (thickness of the4 side)

	3: at the end of the profile along axis_w

	pos_h (int) – Same as pos_w

	pos (FreeCAD.Vector) – Position of point defined by pos_d, pos_w, pos_h

	model_type (int) – Kind of model

	1: dimensional model: it can be printed to assemble a model,but the part
will not work as defined. For example, if printed this aluminum
profile will not work as defined, and also, it is not exact

	name (str) – Name of the object

	
class comps.PartLinGuideBlock(block_dict, rail_dict, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, axis_h=FreeCAD.Vector, pos_d=0, pos_w=0, pos_h=0, pos=FreeCAD.Vector, model_type=1, name='')

	Integration of a ShpLinGuideBlock object into a PartLinGuideBlock
object, so it is a FreeCAD object that can be visualized in FreeCAD
Instead of using all the arguments of ShpLinGuideBlock, it will use
a dictionary

	Parameters

	
	block_dict (dictionary) – Dictionary with the information about the block

	rail_dict (dictionary) – Dictionary with the information about the rail,
it is not necessary, but if not provided, the block will not have
the rail hole

	axis_d (FreeCAD.Vector) – The axis along the depth (lenght) of the block (and rail)

	axis_w (FreeCAD.Vector) – The axis along the width of the block

	axis_h (FreeCAD.Vector) – The axis along the height of the block, pointing up

	pos_d (int) – Location of pos along axis_d (see drawing). Symmetric, negative indexes
means the other side

	0: at the center (symmetric)

	1: at the bolt hole

	2: at the end of the smaller part of the block

	3: at the end of the end of the block

	pos_w (int) – Location of pos along axis_w (see drawing). Symmetric, negative indexes
means the other side

	0: at the center of symmetry

	1: at the inner hole of the rail

	2: at the bolt holes (it can be after the smaller part of the block)

	3: at the end of the smaller part of the block

	4: at the end of the end of the block

	pos_h (int) – Location of pos along axis_h (see drawing)

	0: at the bottom (could make more sense to have 0 at the top instead

	1: at the top of the rail hole

	2: at the bottom of the bolt holes, if thruholes, same as 0

	3: at the top end

	4: at the bottom of the rail (not the block), if the rail has been
defined

	pos (FreeCAD.Vector) – Position at the point defined by pos_d, pos_w, pos_h

	
class parts.IdlePulleyHolder(profile_size, pulleybolt_d, holdbolt_d, above_h, rail=0, mindepth=0, attach_dir='-y', endstop_side=0, endstop_posh=0, pos=FreeCAD.Vector, name='idlepulleyhold')

	Creates a holder for a IdlePulley. Usually made of bolts, washers and bearings
It may include a space for a endstop
It is centered at the idle pulley, but at the back, and at the profile height

 hole for endstop
 / []: hole for the nut
 ________ ___
 ||__| | + above_h
___| [] |____:__________ Z=0
 | | : aluminum profile
 | O O | :
 |________| + profile_size
__________________:________

 O: holes for bolts to attach to the profile

 Z
 :
 _______:__ ...
 / /| :
 /________ / | :
 ||__| | | + height
 | [] | | :
 | | | ..:
 | O O | /
 |________|/.. + depth
 : :
 :........:
 + width

attach_dir = '-y' enstop_side= 1 TOP VIEW

 Y
 :
 :
 __:_________
 | : |__| |
 | (:) |
 ...|__:________|..... X

	Parameters

	
	profile_size (float) – Size of the aluminum profile. 20mm, 30mm

	pulleybolt_d (float) – Diameter of the bolt used to hold the pulley

	holdbolt_d (float) – Diameter of the bolts used to attach this part to the aluminum
profile

	above_h (float) – Height of this piece above the aluminum profile

	rail (float) – Posibility of having a rail instead of holes for mounting the
holder. It has been made fast, so there may be bugs

	mindepth (float) – If there is a minimum depth. Sometimes needed for the endstop
to reach its target

	attach_dir (str) – Normal vector to where the holder is attached:’x’,’-x’,’y’,’-y’
NOW ONLY -y IS SUPPORTED. YOU CAN ROTATE IT

	endstop_side (int) – -1, 0, 1. Side where the enstop will be
if attach_dir= ‘x’, this will be referred to the y axis
if 0, there will be no endstop

	endstop_h (float) – Height of the endstop. If 0 it will be just on top of the profile

	pos (FreeCAD.Vector) – Object Placement

	
depth

	Depth of the holder

	Type

	float

	
width

	Width of the holder

	Type

	float

	
height

	Height of the holder

	Type

	float

	
fcoFat

	Cad object of the compound

	
class parts.SimpleEndstopHolder(d_endstop, rail_l=15, base_h=5.0, h=0, holder_out=2.0, mbolt_d=3.0, endstop_nut_dist=0, min_d=0, fc_axis_d=FreeCAD.Vector, fc_axis_w=FreeCAD.Vector, fc_axis_h=FreeCAD.Vector, ref_d=1, ref_w=1, ref_h=1, pos=FreeCAD.Vector, wfco=1, name='simple_enstop_holder')

	Very simple endstop holder to be attached to a alu profile and
that can be adjusted

 rail_l fc_axis_w
 ...+.... :
 : : :
 ______________________:
| ________ |
| (________) O |
| ________ |-----> fc_axis_d
| (________) O |
|______________________|
 : :
 estp_tot_h

ref_d points: fc_axis_h
 :
1___2______3_______4___5............. ref_h = 2
| :..........: : : |:..... + h
|__:________:_____:_:_|:.....base_h.: ref_h = 1

ref_w points
 fc_axis_w
 _____________________ :
| ________ | |:
| (________) ---| 0 |:
1 ________ ---| |:-----> fc_axis_d.
3 (________) ---| 2 |:
4________________|____|:

 _____________________
| : : : : |:.....: endstop_nut_dist
| :..........: : :|:
|__:________:____:___:|:.....

 if endstop_nut_dist == 0
 just take the length+TOL of the nut

| : : : : |:
| :..........: : : |:.....
|__:________:____:___:|:.....kcomp.NUT_D934_L[estp_bolt_d]+TOL

	Parameters

	
	d_endstop – Dictionary of the endstop

	rail_l (float) – Length of the rail, but only the internal length, not counting
the arches to make the semicircles for the bolts
just from semicircle center to the other semicircle center

	h (float) – Total height, if 0 it will be the minimum height

	base_h (float) – Height for the base (for the mounting bolts)

	holder_out (float) – The endstop holder can end a little bit before to avoid
it to be the endstop

	mbolt_d (float) – Diameter (metric) of the mounting bolts (for the holder
not for the endstop

	endstop_nut_dist – Distance from the top to the endstop nut.
if zero

	min_d (int) – 1: make the endstop axis_d dimension the minimum

	fc_axis_d (FreeCAD Vector) – Axis along the depth

	fc_axis_w (FreeCAD Vector) – Axis along the width

	fc_axis_h (FreeCAD Vector) – Axis along the height

	ref_d (int) – Reference (zero) of fc_axis_d

	1 = at the end on the side of the rails

	2 = at the circle center of one rail (closer to 1)

	3 = at the circle center of the other rail, closer to endstop

	4 = at the bolt of the endstop

	5 = at the end of the endstop (the holder ends before that)

	ref_w (int) – Reference on fc_axis_w. it is symmetrical, only the negative side

	1 = centered

	2 = at one endstop bolt
the other endstop bolt will be on the direction of fc_axis_w

	3 = at one rail center
the rail center will be on the direction of fc_axis_w

	4 = at the end
the end will be on the direction of fc_axis_w

	ref_h (int) – Reference (zero) of fc_axis_h

	1: at the bottom

	2: on top

	pos (FreeCAD.Vector) – Object placement

	wfco (int) – 1 a freecad object will be created

	name (str) – Name of the freecad object, if created

	rails can be countersunk to make space for the bolts (the) –

	
class parts.AluProfBracketPerp(alusize_lin, alusize_perp, br_perp_thick=3.0, br_lin_thick=3.0, bolt_lin_d=3, bolt_perp_d=0, nbolts_lin=1, bolts_lin_dist=0, bolts_lin_rail=0, xtr_bolt_head=3, xtr_bolt_head_d=0, reinforce=1, fc_perp_ax=FreeCAD.Vector, fc_lin_ax=FreeCAD.Vector, pos=FreeCAD.Vector, wfco=1, name='bracket')

	Bracket to join 2 aluminum profiles that are perpendicular,
that is, they are not on the same plane

 aluprof_perp (perpendicular to the bracket)
 / / / bracket (not drawn)
 / / /_____
 / / /_____/|
 /__/ /______|/ aluprof_lin (it is in line with the bracket)
 |__|/

 fc_perp_ax (is not the axis of the perpendicular
 : profile, but the axis of the bracket
 aluprof_perp : attached to the perpendicular profile
 ___:_
 | | \ bracket
 _|___|_______> fc_line_ax
alusize_lin + aluprof_lin
 :_______________

 fc_perp_ax
 :
 :br_perp_thick
 .+.
 :__:
 : | |\
 alusize_perp + | | \
 : | |______\..
 :...|_________|..: br_lin_thick> fc_lin_ax
 :.........:

	Parameters

	
	alusize_lin (float) – Width of the aluminum profile on the line

	alusize_perp (float) – Width of the perpendicular aluminum profile

	br_lin_thick (float) – Thickness of the line bracket

	br_perp_thick (float) – Thickness of the perpendicular bracket

	bolt_lin_d (int) – Metric of the bolt 3, 4, … (integer)

	bolt_perp_d (int) – Metric of the bolt 3, 4, … (integer) on the profile line
if 0, the same as bolt_lin_d

	nbolts_lin (int) – Number of bolts one bolt on the fc_lin_ax,
number of bolts: two bolts on the fc_lin_ax

	bolts_lin_dist (float) – If more than one bolt on fc_lin_ax, defines the
distance between them.
if zero, takes min distance

	bolts_lin_rail (int) – Instead of bolt holes, it will be a rail
it doesnt make sense to have number of bolts with this option
it will work on 2 bolts or more. If nbolts_lin == 3, it
will make a rail between them. so it will be the same to have
nbolts_lin = 2 and bolts_lin_dist = 20
nbolts_lin = 3 and bolts_lin_dist = 10
The rail will be 20, and it will look the same, it will be
more clear to have the first option: 2 bolts

	xtr_bolt_head (float) – Extra space for the bolt head length,
and making a space for it

	xtr_bolt_head_d (float) – Extra space for the bolt head diameter,
and making a space for it. For the wall bolt

	reinforce (int) – 1, if it is reinforced on the sides of lin profile

	fc_perp_ax (FreeCAD.Vector) – Axis of the bracket on the perpendicular prof, see picture

	fc_lin_ax (FreeCAD.Vector) – Axis of the bracket on the aligned profile, see picture

	pos (FreeCAD.Vector) – Position of the center of the bracket on the intersection

	wfco (int) –
	if 1: With FreeCad Object: a freecad object is created

	if 0: only the shape

	name (str) – Name of the freecad object, if created

	
class parts.AluProfBracketPerpFlap(alusize_lin, alusize_perp, br_perp_thick=3.0, br_lin_thick=3.0, bolt_lin_d=3, bolt_perp_d=0, nbolts_lin=1, bolts_lin_dist=0, bolts_lin_rail=0, xtr_bolt_head=1, sunk=1, flap=1, fc_perp_ax=FreeCAD.Vector, fc_lin_ax=FreeCAD.Vector, pos=FreeCAD.Vector, wfco=1, name='bracket_flap')

	Bracket to join 2 aluminum profiles that are perpendicular,
that is, they are not on the same plane
It is wide because it has 2 ears/flaps? on the sides, to attach
to the perpendicular profile

 aluprof_perp (perpendicular to the bracket)
 / / / bracket (not drawn)
 / / /_____
 / / /_____/|
 /__/ /______|/ aluprof_lin (it is in line with the bracket)
 |__|/

 fc_perp_ax (is not the axis of the perpendicular
 : profile, but the axis of the bracket
 aluprof_perp : attached to the perpendicular profile
 ___:_
 | | \ bracket
 _|___|_______> fc_line_ax
alusize_lin + aluprof_lin
 :_______________

 fc_perp_ax
 :
 :br_perp_thick
 .+.
 :__:
 : | |\
 alusize_perp + | | \
 : | |______\..
 :...|__|______|..: br_lin_thick> fc_lin_ax
 :.........:

	Parameters

	
	alusize_lin (float) – Width of the aluminum profile on the line

	alusize_perp (float) – Width of the perpendicular aluminum profile

	br_lin_thick (float) – Thickness of the line bracket

	br_perp_thick (float) – Thickness of the perpendicular bracket

	bolt_lin_d (int) – Metric of the bolt 3, 4, … (integer)

	bolt_perp_d (int) – Metric of the bolt 3, 4, … (integer) on the profile line
if 0, the same as bolt_lin_d

	nbolts_lin (int) –
	1: just one bolt on the fc_lin_ax, or two bolts

	2: two bolts on the fc_lin_ax, or two bolts

	bolts_lin_dist (float) – If more than one bolt on fc_lin_ax, defines the
distance between them.
if zero, takes min distance

	bolts_lin_rail (int) – Instead of bolt holes, it will be a rail
it doesnt make sense to have number of bolts with this option
it will work on 2 bolts or more. If nbolts_lin == 3, it
will make a rail between them. so it will be the same to have
nbolts_lin = 2 and bolts_lin_dist = 20
nbolts_lin = 3 and bolts_lin_dist = 10
The rail will be 20, and it will look the same, it will be
more clear to have the first option: 2 bolts

	xtr_bolt_head (float) – Extra space for the bolt head on the line to the wall
(perpendicular)

	sunk (int) –
	0: just drilled

	1: if the top part is removed,

	2: No reinforcement at all

	flap (int) – If it has flaps, if it hasnt flaps, it is kind of useless
because it is just the middle part without bolts on the
wall, but it can be used to make an union with other parts

	fc_perp_ax (FreeCAD.Vector) – Axis of the bracket on the perpendicular prof, see picture

	fc_lin_ax (FreeCAD.Vector) – Axis of the bracket on the aligned profile, see picture

	pos (FreeCAD.Vector) – Position of the center of the bracket on the intersection

	wfco –
	1: With FreeCad Object: a freecad object is created

	0: only the shape

	name (str) – Name of the freecad object, if created

	
class parts.AluProfBracketPerpTwin(alusize_lin, alusize_perp, alu_sep, br_perp_thick=3.0, br_lin_thick=3.0, bolt_lin_d=3, bolt_perp_d=0, nbolts_lin=1, bolts_lin_dist=1, bolts_lin_rail=0, bolt_perp_line=0, xtr_bolt_head=3, sunk=0, fc_perp_ax=FreeCAD.Vector, fc_lin_ax=FreeCAD.Vector, fc_wide_ax=FreeCAD.Vector, pos=FreeCAD.Vector, wfco=1, name='bracket_twin')

	Bracket to join 3 aluminum profiles that are perpendicular,
that is, they are not on the same plane
to the perpendicular profile

 aluprof_perp (perpendicular to the bracket)
 . fc_wide_ax
 ___ .
 / /|.
 / / /______
 / / /______/| aluprof_lin (it is in line with the bracket)
 / / /_______|/-----------
 / / /_____ . alu_sep
 / / *_____/| .
 /__/ /______|/-----------
 |__|/ aluprof_lin (it is in line with the bracket)
 * shows the reference for the position (argument pos)
 the direction of fc_wide_ax indicates where the other
 line of the bracket will be

 fc_perp_ax (is not the axis of the perpendicular
 : profile, but the axis of the bracket
 aluprof_perp : attached to the perpendicular profile
 ___:_
 | | \ bracket
 _|___|_______> fc_line_ax
alusize_lin + aluprof_lin
 :_______________

 fc_perp_ax
 :
 :br_perp_thick
 .+.
 :__:
 : | |\
 alusize_perp + | | \
 : | |______\..
 :...|_________|..: br_lin_thick> fc_lin_ax
 :.........:

 * bolt_perp_line
 1: * there is a bolt hole
 0: * no bolt hole there
 :__: : : __________________________
 : | | : || || || ||
 alusize_perp + | | _:_ || * || O || * ||
 : | |_|___|___ ||_______|| ||_______||
 :...|____________| |___:_:___|_____|___:_:__||..axis_wid
 :.............: :.........:..+..:
 + brlin_l + union_w
 alusize_lin :
 :..alu_sep......:

	Parameters

	
	alusize_lin (float) – Width of the aluminum profile on the line

	alusize_perp (float) – Width of the perpendicular aluminum profile

	alu_sep (float) – Separation of the 2 paralell profiles, from their centers

	br_lin_thick (float) – Thickness of the line bracket

	br_perp_thick (float) – Thickness of the perpendicular bracket

	bolt_lin_d (int) – Metric of the bolt 3, 4, … (integer)

	bolt_perp_d (int) – Metric of the bolt 3, 4, … (integer) on the profile line
if 0, the same as bolt_lin_d

	nbolts_lin (int) –
	1: just one bolt on the fc_lin_ax, or two bolts

	2: two bolts on the fc_lin_ax, or two bolts

	bolts_lin_dist (float) – If more than one bolt on fc_lin_ax, defines the
distance between them.
if zero, takes min distance

	bolts_lin_rail (int) – Instead of bolt holes, it will be a rail
it doesnt make sense to have number of bolts with this option
it will work on 2 bolts or more. If nbolts_lin == 3, it
will make a rail between them. so it will be the same to have
nbolts_lin = 2 and bolts_lin_dist = 20
nbolts_lin = 3 and bolts_lin_dist = 10
The rail will be 20, and it will look the same, it will be
more clear to have the first option: 2 bolts

	bolt_perp_line (int) –
	1: if it has a bolt on the wall (perp) but in line
with the line aluminum profiles

	0: no bolt

	xtr_bolt_head (float) – Extra space for the bolt head, and making a space for it
only makes sense if bolt_perp_line == 1

	sunk (int) –
	0: No sunk, just drill holes: bolt_perp_line should be 0

	1: sunk, but with reinforcement if possible

	2: no reinforcement

	fc_perp_ax (FreeCAD.Vector) – Axis of the bracket on the perpendicular prof, see picture

	fc_lin_ax (FreeCAD.Vector) – Axis of the bracket on the aligned profile, see picture

	fc_wide_ax (FreeCAD.Vector) – Axis of the bracket on wide direction, see picture
its direction shows where the other aligned profile is

	pos (FreeCAD.Vector) – Position of the center of the bracket on the intersection

	wfco (int) –
	1: With FreeCad Object: a freecad object is created

	0: only the shape

	name (str) – Name of the freecad object, if created

	
class parts.NemaMotorHolder(nema_size=17, wall_thick=4.0, motor_thick=4.0, reinf_thick=4.0, motor_min_h=10.0, motor_max_h=20.0, rail=1, motor_xtr_space=2.0, motor_xtr_space_d=- 1, bolt_wall_d=4.0, bolt_wall_sep=30.0, chmf_r=1.0, fc_axis_h=FreeCAD.Vector, fc_axis_n=FreeCAD.Vector, ref_axis=1, pos=FreeCAD.Vector, wfco=1, name='nema_holder')

	Creates a holder for a Nema motor

	O __ O			
	/ \			
		1		
	\ /			
	O __ O			
	________________		
	_______2________	 wall_thick	

 motor_xtr_space_d
 : :
 ________3_________ 3_:__:____________
 | :: : : :: | | : : | + motor_thick
 |__::__:_1__:__::__| 2......:..1..:....|....:..........> fc_axis_n
 || || | : /
 || || || || | : /
 || || || || | : /
 || || || || | : /
 || || || || | : /
 ||________________|| |_: /
 :: : :
 + reinf_thick :....tot_d........:

 fc_axis_h
 :
 ________:_________
 | :: : : :: | :
 |__::__:_1__:__::__|.................... :
 || ||....+ motor_min_h : :
 || || || || : +tot_h
 || || || || + motor_max_h :
 || || || || : :
 || || || ||...................: :
 ||________________||..................................:
 : : : :
 : : : :
 : :............: :
 : bolt_wall_sep :
 : :
 : :
 :.....tot_w........:
 ::
 motor_xtr_space

1: ref_axis = 1 & ref_bolt = 0
2: ref_axis = 0 & ref_bolt = 0
--3: ref_axis = 0 & ref_bolt = 0

	Parameters

	
	nema_size (int) – Size of the motor (NEMA)

	wall_thick (float) – Thickness of the side where the holder will be screwed to

	motor_thick (float) – Thickness of the top side where the motor will be screwed to

	reinf_thick (float) – Thickness of the reinforcement walls

	motor_min_h (float) – Distance of from the inner top side to the top hole of the bolts to
attach the holder (see drawing)

	motor_max_h (float) – Distance of from the inner top side to the bottom hole of the bolts to
attach the holder

	rail (int) –
	2: the rail goes all the way to the end, not closed

	1: the holes for the bolts are not holes, there are 2 rails, from
motor_min_h to motor_max_h

	0: just 2 pairs of holes. One pair at defined by motor_min_h and the
other defined by motor_max_h

	motor_xtr_space (float) – Extra separation between the motor and the sides

	motor_xtr_space_d (float) – Extra separation between the motor and the wall side (where the bolts)
it didn’t exist before, so for compatibility

	-1: same has motor_xtr_space (compatibility), considering bolt head
length

	0: no separation

	>0: exact separation

	bolt_wall_d (int/float) – Metric of the bolts to attach the holder

	bolt_wall_sep (float) – Separation between the 2 bolt holes (or rails). Optional.

	chmf_r (float) – Radius of the chamfer, whenever chamfer is done

	fc_axis_h (FreeCAD Vector) – Axis along the axis of the motor

	fc_axis_n (FreeCAD Vector) – Axis normal to surface where the holder will be attached to

	ref_axis (int) –
	1: the zero of the vertical axis (axis_h) is on the motor axis

	0: the zero of the vertical axis (axis_h) is at the wall

	pos (FreeCAD.Vector) – Position of the holder (considering ref_axis)

	wfco (int) –
	1: creates a FreeCAD object

	0: only creates a shape

	name (string) – Name of the FreeCAD object

	
class parts.ThinLinBearHouse1rail(d_lbear, fc_slide_axis=FreeCAD.Vector, fc_bot_axis=FreeCAD.Vector, axis_center=1, mid_center=1, pos=FreeCAD.Vector, name='thinlinbearhouse1rail')

	Makes a housing for a linear bearing, but it is very thin
and intented to be attached to one rail, instead of 2
it has to parts, the lower and the upper part

 ________ ______________
| ::...::| | ::........:: |
| :: ::| Upper part |.:: ::.|
|-::()::|------ |.:: ::.| --> fc_slide_axis
| ::...::| Lower part | ::........:: |
|_::___::| ______| :: :: |______
|_::|_|::| |__:_:___::________::__:_:__|
 :
 _________ :
|____O____| v
| 0: :0 | fc_bot_axis
| : : |
| : : |
| : : |
| :.....: |
|__0:_:0__|
|____O____|

 ________ ______________
| ::...::| | ::........:: |
| :: ::| Upper part |.:: ::.|
|-::()::|------ |.:: *axis_center = 1
| ::...::| Lower part | ::........:: |
|_::___::| ______| :: :: |______
|_::|_|::| |__:_:___::___*____::__:_:__|
 | axis_center = 0
 |
 V
 always centered in this axis

1: axis_center=1 | ::........:: |
 mid_center =1 |.:: ::.|
2: axis_center=0 4 |.:: 1 --> fc_slide_axis
 mid_center =1 | ::........:: |
3: axis_center=0 ______| :: :: |______
 mid_center =0 |_:3:___::___2____::__:_:__|
4: axis_center=1
 mid_center =0

	Parameters

	
	d_lbear (dictionary) – Dictionary with the dimensions of the linear bearing

	fc_slide_axis (FreeCAD.Vector) – Direction of the slide

	fc_bot_axis (FreeCAD.Vector) – Direction of the bottom

	axis_center (int) – See picture, indicates the reference point

	mid_center (int) – See picture, indicates the reference point

	pos (FreeCAD.Vector) – Position of the reference point,

	
n1_slide_axis

	
	Type

	FreeCAD.Vector

	
n1_bot_axis

	
	Type

	FreeCAD.Vector

	
n1_perp

	
	Type

	FreeCAD.Vector

	
axis_h

	
	Type

	float

	
boltcen_axis_dist

	
	Type

	float

	
boltcen_perp_dist

	
	Type

	float

	Dimensions:
	
	tot_h, tot_w, tot_l

	housing_l, base_h

	FreeCAD objects:
	
	fco_top : Top part of the linear bearing housing

	fco_bot : Bottom part of the linear bearing housing

 ________ ______________
| ::...::| | ::........:: |
| :: ::| |.:: ::.|
|-::()::|---: |.:: ::.| --> n1_slide_axis
| ::...::| +axis_h | ::........:: |
|_::___::| : ______| :: :: |______
|_::|_|::|...: |__:_:___::________::__:_:__|
 :
 _________ v
|____O____| n1_bot_axis
| 0: :0 |
| : : |
| : : |---+ boltcen_axis_dist .. --> n1_perp
| : : | : :
| :.....: | : + boltrailcen_dist
|__0:_:0__|---- :
|____O____|------------------------:
 : :
 : :
 :...:
 +boltcen_perp_dist

 housing_l..
 : :
 ________.... :______________:
| ::...::| : | ::........:: |
| :: ::| : |.:: ::.|
|-::()::| : |.:: ::.| --> n1_slide_axis
| ::...::| +tot_h | ::........:: |
|_::___::| : ... ______| :: :: |______
|_::|_|::|...: base_h ...|__:_:___::________::__:_:__|
: : : :
:........: :...........................:
 + +
 tot_w tot_l

	
class parts.ThinLinBearHouse(d_lbear, fc_slide_axis=FreeCAD.Vector, fc_bot_axis=FreeCAD.Vector, fc_perp_axis=FreeCAD.Vector, axis_h=0, bolts_side=1, axis_center=1, mid_center=1, bolt_center=0, pos=FreeCAD.Vector, name='thinlinbearhouse')

	Makes a housing for a linear bearing, but it is very thin
and intented to be attached to 2 rail
it has to parts, the lower and the upper part

 ________ ______________
| ::...::| | ::........:: |
| :: ::| Upper part |.:: ::.|
|-::()::|------ |.:: ::.| --> fc_slide_axis
| ::...::| Lower part | ::........:: |
|_::___::| |_::________::_|
 :
 :
 _________ v
| 0: :0 | fc_bot_axis
| : : |
| : : |
| : : |--------> fc_perp_axis
| : : |
| :.....: |
|__0:_:0__|

 ________ ______________
| ::...::| | ::........:: |
| :: ::| Upper part |.:: ::.|
|-::()::|------> fc_perp_axis |.:: *axis_center = 1
| ::...::| Lower part | ::........:: |
|_::___::| |_::___*____::_|
 | | axis_center = 0
 | |
 V V
 centered in any of these axes

1: axis_center=1 | ::........:: |
 mid_center =1 |.:: ::.|
2: axis_center=0 |.:4 1 --> fc_slide_axis
 mid_center =1 | ::........:: |
3: axis_center=0 | :: :: |
 mid_center =0 |_:3___2____::_|
4: axis_center=1

And 8 more posibilities:
5: bolt_center = 1
6: bolt_center = 0

| 5:6: |
| : : |
| : : |
| : : |--------> fc_perp_axis
| : : |
| :.....: |
|__0:_:0__|
 mid_center =0

	Parameters

	
	d_lbear (dictionary) – Dictionary with the dimensions of the linear bearing

	fc_slide_axis (FreeCAD.Vector) – Direction of the slide

	fc_bot_axis (FreeCAD.Vector) – Direction of the bottom

	fc_perp_axis (FreeCAD.Vector) – Direction of the other
perpendicular direction. Not useful unless bolt_center == 1
if = V0 it doesn’t matter

	axis_h (int) – Distance from the bottom to the rod axis

	0: take the minimum distance

	X: (any value) take that value, if it is smaller than the
minimum it will raise an error and would not take that
value

	bolts_side (int) – See picture, indicates the side where is bolt

	axis_center (int) – See picture, indicates the reference point

	mid_center (int) – See picture, indicates the reference point

	bolt_center (int) – See picture, indicates the reference point, if it is
on the bolt or on the axis

	pos (FreeCAD.Vector) – Position of the reference point,

	
n1_slide_axis

	
	Type

	FreeCAD.Vector

	
n1_bot_axis

	
	Type

	FreeCAD.Vector

	
n1_perp

	
	Type

	FreeCAD.Vector

	
axis_h

	
	Type

	float

	
boltcen_axis_dist

	
	Type

	float

	
boltcen_perp_dist

	
	Type

	float

	Dimensions:
	
	H, W, L

	FreeCAD objects:
	
	fco_top : Top part of the linear bearing housing

	fco_bot : Bottom part of the linear bearing housing

 ________ ______________
 | ::...::| | ::........:: |
 | :: ::| |.:: ::.|
 |-::()::|---: |.:: ::.| --> n1_slide_axis
::...::	+axis_h	::........::
_::___::	:	:: ::
_::___::	...:	_::________::_
 :
 v
 _________ n1_bot_axis
 | 0: :0 |
 | : : |
 | : : |........ --> n1_perp
 | : : | :
 | :.....: | + boltcen_axis_dist
 |__0:_:0__|---:
 : :
 : :
 :...:
 +boltcen_perp_dist

 L
 : :
 ________.... :______________:
 | ::...::| : | ::........:: |
 | :: ::| : |.:: ::.|
 |-::()::| : |.:: ::.| --> n1_slide_axis
 | ::...::| + H | ::........:: |
 |_::___::|...: |_::________::_|
 : :
 :........:
 +
 W

bolts_side = 0 bolts_side = 1

| 0: :0 | ___________
: :		0: :0
: :		: :
: :		: :
:.....:		_0:_____:0_
__0:_:0__		

	
class parts.LinBearHouse(d_lbearhousing, fc_slide_axis=FreeCAD.Vector, fc_bot_axis=FreeCAD.Vector, axis_center=1, mid_center=1, pos=FreeCAD.Vector, name='linbearhouse')

	Makes a housing for a linear bearing takes the dimensions
from a dictionary, like the one defined in kcomp.py
it has to parts, the lower and the upper part

 _____________ ______________
:: ___ ::		.::........::.		
:: / \ ::	Upper part	:: ::		
---	-----	---	------	:: ::
:: ___/ ::	Lower part	.::........::.		
::_________::		_::________::_		

 | 0 : : 0 |
 | : : |
 | : : |
 | : : |
 | : : |
 |_0_:_____:_0_|

1: axis_center=1 | : :........: : |
 mid_center =1 |.: : : :.|
2: axis_center=0 |.:4: 1 --------->: fc_slide_axis
 mid_center =1 | : :........:.: |
3: axis_center=0 | : : : : |
 mid_center =0 |_:3:___2____:_:_|
4: axis_center=1
 mid_center =0

	
class parts.ThinLinBearHouseAsim(d_lbear, fc_fro_ax=FreeCAD.Vector, fc_bot_ax=FreeCAD.Vector, fc_sid_ax=FreeCAD.Vector, axis_h=0, bolts_side=1, refcen_hei=1, refcen_dep=1, refcen_wid=1, bolt2cen_wid_n=0, bolt2cen_wid_p=0, pos=FreeCAD.Vector, name='thinlinbearhouse_asim')

	There are

	3 axis:

	3 planes (normal to axis)

	3 distances to plane

	fc_fro_ax

	fro: front

	D: dep: depth

	fc_bot_ax

	hor: horizontal)

	H: hei: height

	fc_sid_ax

	lat: lateral (medial)

	W: wid: width

The planes are on the center of the slidding rod (height and width),
and on the middle of the piece (width)

The 3 axis are perpendicular, but the cross product of 2 vectors may
result on the other vector or its negative.

fc_fro_ax points to the front of the figure, but it is symmetrical
so it can point to the back
fc_bot_ax points to the bottom of the figure (not symmetrical)
fc_sid_ax points to the side of the figure. Not symmetrical if
bolt2cen_wid_n or bolt2cen_wid_p are not zero

Makes a housing for a linear bearing, but it is very thin
and intented to be attached to 2 rail
it has to parts, the lower and the upper part

 ________ ______________
| ::...::| | ::........:: |
| :: ::| Upper part |.:: ::.|
|-::()::|------ Horizontal plane |.:: ::.| --> fc_fro_ax
| ::...::| Lower part | ::........:: |
|_::___::| |_::________::_|
 :
 :
 _________ v
| 0: :0 | fc_bot_axis
| : : |
| : : |
| : : |--------> fc_sid_ax
| : : |
| :.....: |
|__0:_:0__|
 ________ ______________
| ::...::| | ::........:: |
| :: ::| Upper part |.:: ::.|
|-::()::|------> fc_sid_ax |.:: *refcen_hei = 1
| ::...::| Lower part | ::........:: |
|_::___::| |_::___*____::_|
 | | refcen_hei = 0
 | |
 V V
 centered in any of these axes
refcen_hei: reference centered on the height
 =1: the horizontal plane (height) is on the axis of the rod
 =0: the horizontal plane is at the bottom
refcen_dep: reference centered on the depth
 =1: the frontal plane (depth) is on the middle of the piece
 =0: the frontal plane is at the bolts
refcen_wid=1: reference centered on the width
 the lateral plane (width) is on the medial axis, dividing
 the piece on the right and left
 =0: the lateral plane is at the bolts

1: refcen_hei=1 | ::........:: |
 fro_center =1 |.:: ::.|
2: refcen_hei=0 |.:4 1 --> fc_fro_ax
 fro_center =1 | ::........:: |
3: refcen_hei=0 | :: :: |
 fro_center =0 |_:3___2____::_|
4: refcen_hei=1

And 8 more posibilities:
5: refcen_wid = 0
6: refcen_wid = 1

| 5:6: |
| : : |
| : : |
| : : |--------> fc_sid_ax
| : : |
| :.....: |
|__0:_:0__|

	Parameters

	
	d_lbear (dictionary) – Dictionary with the dimensions of the linear bearing

	fc_fro_ax (FreeCAD.Vector) – Direction of the slide

	fc_bot_ax (FreeCAD.Vector) – Direction of the bottom

	fc_sid_ax (FreeCAD.Vector) – Direction of the other
perpendicular direction. Not useful unless refcen_wid == 0
if = V0 it doesn’t matter

	axis_h (float) – Distance from the bottom to the rod axis

	0: take the minimum distance

	X: (any value) take that value, if it is smaller than the
minimum it will raise an error and would not take that
value

	refcen_hei (int) – See picture, indicates the reference point

	refcen_dep (int) – See picture, indicates the reference point

	refcen_wid (int) – See picture, indicates the reference point, if it is
on the bolt or on the axis

	pos (FreeCAD.Vector) – Position of the reference point,

	
nfro_ax

	
	Type

	FreeCAD.Vector normalized fc_fro_ax

	
nbot_ax

	
	Type

	FreeCAD.Vector normalized fc_bot_ax

	
nsid_ax

	
	Type

	FreeCAD.Vector

	
axis_h

	
	Type

	float

	
bolt2cen_dep

	
	Type

	float

	
bolt2cen_wid_n

	
	Type

	float

	
bolt2cen_wid_p

	
	Type

	float

	
bolt2bolt_wid

	
	Type

	bolt2cen_wid_n + bolt2cen_wid_p

	Dimensions:
	
	D : float

housing_d

	W : float

housing_w

	H : float

housing_h

	FreeCAD objects:
	
	fco_top : Top part of the linear bearing housing

	fco_bot : Bottom part of the linear bearing housing

 ________ ______________
| ::...::| | ::........:: |
| :: ::| |.:: ::.|
|-::()::|---: |.:: ::.| --> nfro_ax
::...::	+axis_h	::........::
_::___::	:	:: ::
_::___::	...:	_::________::_
 :
 v
 _________ nbot_ax
| 0: :0 |
| : : |
| : : |........ --> nsid_ax
| : : | :
| :.....: | + boltcen_dep
|__0:_:0__|---:
 : : :
 : : :
 :.:.:
 : + bolt2cen_wid_p: distance form the bolt to the center
 : on the width dimension. The bolt on the positive side
 + bolt2cen_wid_n: distance form the bolt to the center
 : on the width dimension. The bolt on the negative side
 :
 + if refcen_wid=0 the reference will be on the bolt2cen_wid_n

 D
 : :
 ________.... :______________:
| ::...::| : | ::........:: |
| :: ::| : |.:: ::.|
|-::()::| : |.:: ::.| --> nfro_ax
| ::...::| + H | ::........:: |
|_::___::|...: |_::________::_|
: :
:........:
 +
 W

bolts_side = 0 bolts_side = 1

| 0: :0 | ___________
: :		0: :0
: :		: :
: :		: :
:.....:		_0:_____:0_
__0:_:0__		

	
class filter_holder_clss.PartFilterHolder(filter_l=60.0, filter_w=25.0, filter_t=2.5, base_h=6.0, hold_d=12.0, filt_supp_in=2.0, filt_rim=3.0, filt_cen_d=0, fillet_r=1.0, boltcol1_dist=10.0, boltcol2_dist=12.5, boltcol3_dist=25, boltrow1_h=0, boltrow1_2_dist=12.5, boltrow1_3_dist=20.0, boltrow1_4_dist=25.0, bolt_cen_mtr=4, bolt_linguide_mtr=3, beltclamp_t=3.0, beltclamp_l=12.0, beltclamp_h=8.0, clamp_post_dist=4.0, sm_beltpost_r=1.0, tol=0.4, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, axis_h=FreeCAD.Vector, pos_d=0, pos_w=0, pos_h=0, pos=FreeCAD.Vector, model_type=0, name='')

	Integration of a ShpFilterHolder object into a PartFilterHolder
object, so it is a FreeCAD object that can be visualized in FreeCAD

	
class filter_holder_clss.ShpFilterHolder(filter_l=60.0, filter_w=25.0, filter_t=2.5, base_h=6.0, hold_d=12.0, filt_supp_in=2.0, filt_rim=3.0, filt_cen_d=0, fillet_r=1.0, boltcol1_dist=10.0, boltcol2_dist=12.5, boltcol3_dist=25, boltrow1_h=0, boltrow1_2_dist=12.5, boltrow1_3_dist=20.0, boltrow1_4_dist=25.0, bolt_cen_mtr=4, bolt_linguide_mtr=3, beltclamp_t=3.0, beltclamp_l=12.0, beltclamp_h=8.0, clamp_post_dist=4.0, sm_beltpost_r=1.0, tol=0.4, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, axis_h=FreeCAD.Vector, pos_d=0, pos_w=0, pos_h=0, pos=FreeCAD.Vector)

	Creates the filter holder shape

 beltpost_l = 3*lr_beltpost_r + sm_beltpost_r
pos_h axis_h : :
| : : clamp_post_dist
v pos_w : :
9 7___6 5___4 : :___: :___
8 | | | | : | | | |
7 |...|__|___|____:____|___|__|...|...
 | _ _ | 2 * bolt_linguide_head_r_tol
6 | |o| |o| |-----------------------
5 | |o| |o| |-------------------- +boltrow1_4_dist
 | | : :
 | | +boltrow1_3_dist
4 | (O) (O) |--: : :
 | | +boltrow1_2_dist : :
 | | : : :
3 | (O) (o) (O) (o) (O) |--:----------------:--:
 |_______________________________| + boltrow1_h
2 |_______________________________|..:..................
1 | :.........................: |..: filt_hole_h :
 | : : | + base_h
0 |___:___________x___________:___|.................:........axis_w
 : : : :
 :.....: : :
 : + boltcol1_dist
 : : :
 :.......: :
 : + boltcol2_dist
 : :
 :............:
 boltcol3_dist

 3 21 0 pos_w (position of the columns)
 7 6 5 4 pos_w (position of the belt clamps)

 beltclamp_l
 clamp_post ..+...
 V : :
 _______________x__________:____:......................> axis_w
 |____| |____|.. beltclamp_blk_t :
 |____ <) (> ____|..: beltclamp_t :+ hold_d
 |____|_____________________|____|....................:
 |_______________________________|
 | ___________________________ |.................
 | | | |..filt_supp_in :
 | | : : | | : :
 | | : : | | : :+filt_hole_d
 | | : : | | + filt_supp_d :
 | | :.......................: | |..: :
 | |___________________________| |.................:
 _____________________________/.....filt_rim
 : : : : : :
 : : : : : :
 : : : :+: :
 : : : filt_supp_in : :
 : : : : : :
 : : :.... filt_supp_w: : :
 : : : :
 : : : :
 : :...... filt_hole_w : :
 : :+:
 : filt_rim :
 : :
 :....... tot_w:

 0123 pos_d
 0 45 pos_d
 ____...............................
 | || | + beltclamp_h :
 |_||_|...:................ :
 | ..| : :
 |:: | : :
 |:: | : :
 | ..| : :
 | ..| : :+ tot_h
 |:: | : :
 | ..| :+hold_h :
 | ..| : :
 |:: | : :
 | ..| : :
 | ________________ : :
 | :...........: | : :
 | : : | : :
 x________:_________:___|.:.........:...>axis_d
 : : :
 :.............: :
 : filt_cen_d :
 : :
 :...... tot_d:

pos_d: 0 6 78 9 1011 12

 pos_o (origin) is at pos_d=0, pos_w=0, pos_h=0, It marked with x

	Parameters

	
	filter_l (float) – Length of the filter (it will be along axis_w). Larger dimension

	filter_w (float) – Width of the filter (it will be along axis_d). Shorter dimension

	filter_t (float) – Thickness/height of the filter (it will be along axis_h). Very short

	base_h (float) – Height of the base

	hold_d (float) – Depth of the holder (just the part that holds)

	filt_supp_in (float) – How much the filter support goes inside from the filter hole

	filt_cen_d (float) – Distance from the filter center to the beginning of the filter holder
along axis_d

	0: it will take the minimum distance
or if it is smaller than the minimum distance

	filt_rim (float) – Distance from the filter to the edge of the base

	fillet_r (float) – Radius of the fillets

	boltcol1_dist (float) – Distance to the center along axis_w of the first column of bolts

	boltcol2_dist (float) – Distance to the center along axis_w of the 2nd column of bolts

	boltcol3_dist (float) – Distance to the center along axis_w of the 3rd column of bolts
This column could be closer to the center than the 2nd, if distance
is smaller

	boltrow1_h (float) – Distance from the top of the filter base to the first row of bolts

	0: the distance will be the largest head diameter in the first row
in any case, it has to be larger than this

	boltrow1_2_dist (float) – Distance from the first row of bolts to the second

	boltrow1_3_dist (float) – Distance from the first row of bolts to the third

	boltrow1_4_dist (float) – Distance from the first row of bolts to the 4th

	bolt_cen_mtr (integer (could be float: 2.5)) – Diameter (metric) of the bolts at the center or at columns other than
2nd column

	bolt_linguide_mtr (integer (could be float: 2.5)) – Diameter (metric) of the bolts at the 2nd column, to attach to a
linear guide

	beltclamp_t (float) – Thickness of the hole for the belt. Inside de belt clamp blocks
(along axis_d)

	beltclamp_l (float) – Length of the belt clamp (along axis_w)

	beltclamp_h (float) – Height of the belt clamp: belt width + 2
(along axis_h)

	clamp_post_dist (float) – Distance from the belt clamp to the belt clamp post

	sm_beltpost_r (float) – Small radius of the belt post

	tol (float) – Tolerances to print

	axis_d (FreeCAD.Vector) – Length/depth vector of coordinate system

	axis_w (FreeCAD.Vector) – Width vector of coordinate system
if V0: it will be calculated using the cross product: axis_d x axis_h

	axis_h (FreeCAD.Vector) – Height vector of coordinate system

	pos_d (int) – Location of pos along the axis_d (0,1,2,3,4,5), see drawing

	0: at the back of the holder

	1: at the end of the first clamp block

	2: at the center of the holder

	3: at the beginning of the second clamp block

	4: at the beginning of the bolt head hole for the central bolt

	5: at the beginning of the bolt head hole for the linguide bolts

	6: at the front side of the holder

	7: at the beginning of the hole for the porta

	8: at the inner side of the porta thruhole

	9: at the center of the porta

	10: at the outer side of the porta thruhole

	11: at the end of the porta

	12: at the end of the piece

	pos_w (int) – Location of pos along the axis_w (0-7) symmetrical

	0: at the center of symmetry

	1: at the first bolt column

	2: at the second bolt column

	3: at the third bolt column

	4: at the inner side of the clamp post (larger circle)

	5: at the outer side of the clamp post (smaller circle)

	6: at the inner side of the clamp rails

	7: at the end of the piece

	pos_h (int) – Location of pos along the axis_h (0-8)

	0: at the bottom (base)

	1: at the base for the porta

	2: at the top of the base

	3: first row of bolts

	4: second row of bolts

	5: third row of bolts

	6: 4th row of bolts

	7: at the base of the belt clamp

	8: at the middle of the belt clamp

	9: at the top of the piece

	pos (FreeCAD.Vector) – Position of the cylinder, taking into account where the center is

Note

All the parameters and attributes of parent class SinglePart

	
Dimensional attributes

	

	
filt_hole_d

	depth of the hole for the filter (for filter_w)

	Type

	float

	
filt_hole_w

	width of the hole for the filter (for filter_l)

	Type

	float

	
filt_hole_h

	height of the hole for the filter (for filter_t)

	Type

	float

	
beltclamp_blk_t

	thickness (along axis_d) of each of the belt clamp blocks

	Type

	float

	
beltpost_l

	length of the belt post (that has a shap of 2 circles and the tangent

	Type

	float

	
lr_beltpost_r

	radius of the larger belt post (it has a belt shape)

	Type

	float

	
clamp_lrbeltpostcen_dist

	distance from the center of the larger belt post cylinder to the clamp
post

	Type

	float

	
prnt_ax

	Best axis to print (normal direction, pointing upwards)

	Type

	FreeCAD.Vector

	
d0_cen

	
	Type

	int

	
w0_cen

	
	Type

	int

	
h0_cen

	indicates if pos_h = 0 (pos_d, pos_w) is at the center along
axis_h, axis_d, axis_w, or if it is at the end.

	1 : at the center (symmetrical, or almost symmetrical)

	0 : at the end

	Type

	int

 lr_beltpost_r clamp_lrbeltpostcen_dist
 + ..+..
pos_h axis_h :: :
| : :: clamp_post_dist
 :: .+.
 :: : :
 :: : : beltclamp_l
v pos_w : :: : :.+..
9 7___6 5___4 : ::__: :___:
8 | | | | : | | | |
7 |...|__|___|____:____|___|__|...|...
 | _ _ | 2 * bolt_linguide_head_r_tol
6 | |o| |o| |-----------------------

	
class tensioner_clss.TensionerSet(aluprof_w=20.0, belt_pos_h=20.0, hold_bas_h=0, hold_hole_2sides=0, boltidler_mtr=3, bolttens_mtr=3, boltaluprof_mtr=3, tens_stroke=20.0, wall_thick=3.0, in_fillet=2.0, pulley_stroke_dist=0, nut_holder_thick=4.0, opt_tens_chmf=1, min_width=0, tol=0.4, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, axis_h=FreeCAD.Vector, pos_d=0, pos_w=0, pos_h=0, pos=FreeCAD.Vector, group=0, name='')

	Set composed of the idler pulley and the tensioner

 axis_h axis_h
 : :
 ___:___ :______________
 | ___ | | __________ |---
 | | | | | |__________| | : |
.---- belt_pos_h------/| |___| |\ |________ |---
: / |_______| \ | | /
: . ____/ | | ____ |________| /
:..hold_bas_h:.|_::____|_______|____::_| |___::___|/......>axis_d

 wall_thick
 +
 : :
 _____________:_:________.........>axis_w
 | | | : : | | | :
 | O | | : : | | O | + aluprof_w
 |____|__| : : |__|_____|....:
 | : : |
 |_:___:_|
 | |
 _/
 :
 :
 axis_d

 axis_h axis_h
 : pos_h :
....................... ___:___ 4 :______________
: | ___ | | __________ |---
: | | | | 3 | |__________| | : |
:+hold_h /| |___| |\ 2 |________ |---
: / |_______| \ | | /
: . ____/ | | ____ 1 |________| /
:..hold_bas_h:.|_::____|___o___|____::_|0 o___::___|/......>axis_d
 01 2 3 4 5 6: pos_d

 having the tensioner extended: 7 8
 _____________ : :
 |---------
 | : |
 |---------

 hold_bas_w
 : .hold_w. :
 : : wall_thick :
 : : + :
 : : : : :
 pos_w: 4__3____2_1_0_:_:________:........>axis_w
 | | | : : | | | :
 | O | | : : | | O | + hold_bas_l
 |____|__| : : |__|_____|....:
 | : : |
 |_:___:_|
 | |
 _/
 :
 :
 axis_d

 pos_o (origin) is at pos_d=0, pos_w=0, pos_h=0, It marked with o

	Parameters

	
	aluprof_w (float) – Width of the aluminum profile

	belt_pos_h (float) – The position along axis_h where the idler pulley that conveys the belt
starts. THIS POSITION IS CENTERED at the ilder pulley

	tens_h (float) – Height of the ilder tensioner

	tens_w (float) – Width of the ilder tensioner

	tens_d_inside (float) – Max length (depth) of the ilder tensioner that is inside the holder

	wall_thick (float) – Thickness of the walls

	in_fillet (float) – Radius of the inner fillets

	boltaluprof_mtr (float) – Diameter (metric) of the bolt that attachs the tensioner holder to the
aluminum profile (or whatever is attached to)

	bolttens_mtr (float) – Diameter (metric) of the bolt for the tensioner

	hold_bas_h (float) – Height of the base of the tensioner holder
if 0, it will take wall_thick

	opt_tens_chmf (int) –
	1: there is a chamfer at every edge of tensioner, inside the holder

	0: there is a chamfer only at the edges along axis_w, not along axis_h

	hold_hole_2sides (int) – In the tensioner holder there is a hole to see inside, it can be at
each side of the holder or just on one side

	0: only at one side

	1: at both sides

	min_width (int) – Make the rim the minimum: the diameter of the washer

	0: normal width: the width of the aluminum profile

	1: minimum width: diameter of the washer

	tol (float) – Tolerances to print

	axis_d (FreeCAD.Vector) – Depth vector of coordinate system

	axis_w (FreeCAD.Vector) – Width vector of coordinate system
if V0: it will be calculated using the cross product: axis_l x axis_h

	axis_h (FreeCAD.Vector) – Height vector of coordinate system

	pos_d (int) – Location of pos along the axis_d

	0: at the back of the holder

	1: at the place where the tensioner can reach all the way inside

	2: at the center of the base along axis_d, where the bolts to attach

	the holder base to the aluminum profile

	3: at the end of the base

	4: at the end of the holder

	5: at the center of the pulley

	6: at the end of the idler tensioner

	7: at the center of the pulley, when idler is all the way out

	8: at the end of the idler tensioner, whenit is all the way out

	pos_w (int) – Location of pos along the axis_w

	0: at the center of symmetry

	1: at the inner walls of the holder, which is the pulley radius

	2: at the end of the holder (the top part, where the base starts)

	3: at the center of the bolt holes to attach the holder base to the
aluminum profile

	4: at the end of the piece along axis_w
axes have direction. So if pos_w == 3, the piece will be drawn
along the positive side of axis_w

	pos_h (int) – Location of pos along the axis_h (0,1,2,3,4)

	0: at the bottom of the holder

	1: at the top of the base of the holder (for the bolts)

	2: at the bottom of the hole where the idler tensioner goes

	3: at the middle point of the hole where the idler tensioner goes

	4: at the top of the holder

	pos (FreeCAD.Vector) – position of the piece

	for the set (Paramenters) –

	tens_in_ratio (float) – from 0 to 1, the ratio of the stroke that the tensioner is inside.

	if 1: it is all the way inside

	if 0: it is all the way outside (all the tens_stroke)

Note

All the parameters and attributes of father class SinglePart

	
prnt_ax

	Best axis to print (normal direction, pointing upwards)

	Type

	FreeCAD.Vector

	
d0_cen

	
	Type

	int

	
w0_cen

	
	Type

	int

	
h0_cen

	indicates if pos_h = 0 (pos_d, pos_w) is at the center along
axis_h, axis_d, axis_w, or if it is at the end.

	1 : at the center (symmetrical, or almost symmetrical)

	0 : at the end

	Type

	int

	
tot_d

	total depth, including the idler tensioner

	Type

	float

	
tot_d_extend

	total depth including the idler tensioner, having it extended

	Type

	float

	
class partset.NemaMotorPulleySet(nema_size=17, base_l=32.0, shaft_l=24.0, shaft_r=0, circle_r=11.0, circle_h=2.0, chmf_r=1, rear_shaft_l=0, bolt_depth=3.0, pulley_pitch=2.0, pulley_n_teeth=20, pulley_toothed_h=7.5, pulley_top_flange_h=1.0, pulley_bot_flange_h=0, pulley_tot_h=16.0, pulley_flange_d=15.0, pulley_base_d=15.0, pulley_tol=0, pulley_pos_h=- 1, axis_d=FreeCAD.Vector, axis_w=None, axis_h=FreeCAD.Vector, pos_d=0, pos_w=0, pos_h=1, pos=FreeCAD.Vector, group=1, name='')

	Set composed of a Nema Motor and a pulley

Number positions of the pulley will be after the positions of the motor

 axis_h
 :
 :
 _______:_______11 <-> 5
 |______:_:______|.....10 <-> 4
 | : : |
 | : : |........9 <-> 3
 | : : |
 ___|__:_:__|___8 <-> 2
 |______:_:______|.....7 <-> 1
 | : : |
 | : : |
 | : : |
 |_____:o:_____|......6 <-> 0 (for the pulley)
 : : :
 : : :
 0...56789.......axis_d, axis_w
 |
 01 23456 (for the pulley)

 axis_h
 :
 :
 2
 | | :
 | | + shaft_l
 ___|1|___............. :
 _____|____0____|_____......:..circle_h.:
 | :: 3 :: | :
 | | :
 | | :
 | | + base_l
 | | :
 | | :
 | | :
 |__________4__________|.....:
 : : :
 : : :
 : : :+ rear_shaft_l (optional)
 :5: :
 01...2..3..4.....:...........axis_d (same as axis_w)
 | | | |
 | | | v
 | | | end of the motor
 | | v
 | | bolt holes
 | V
 | radius of the circle (cylinder)
 v
 radius of the shaft

 axis_w
 :
 :
 __________:__________.....
 / \....: chmf_r
 | O O |
 | _ |
 | . . |
 | (()) |........axis_d
. .
O O
 _____________________/
 : :
 :.....................:
 +
 motor_w (same as d): Nema size in inches /10

pos_o (origin) is at pos_d=0, pos_w=0, pos_h=1

	Parameters

	
	nema_size (dict) – List of sizes defines in kcomps NEMA motor dimensions.

	base_l (float,) – Length (height) of the base

	shaft_l (float,) – Length (height) of the shaft, including the small cylinder (circle)
at the base

	shaft_r (float,) – Radius of the shaft, if not defined, it will take the dimension defined
in kcomp

	circle_r (float,) – Radius of the cylinder (circle) at the base of the shaft
if 0 or circle_h = 0 -> no cylinder

	circle_h (float,) – Height of the cylinder at the base of the shaft
if 0 or circle_r = 0 -> no cylinder

	chmf_r (float,) – Chamfer radius of the chamfer along the base length (height)

	rear_shaft_l (float) – Length of the rear shaft, 0 : no rear shaft

	bolt_depth (float) – Depth of the bolt holes of the motor

	pulley_pitch (float/int) – Distance between teeth: Typically 2mm, or 3mm

	pulley_n_teeth (int) – Number of teeth of the pulley

	pulley_toothed_h (float) – Height of the toothed part of the pulley

	pulley_top_flange_h (float) – Height (thickness) of the top flange, if 0, no top flange

	pulley_bot_flange_h (float) – Height (thickness) of the bot flange, if 0, no bottom flange

	pulley_tot_h (float) – Total height of the pulley

	pulley_flange_d (float) – Flange diameter, if 0, it will be the same as the base_d

	pulley_base_d (float) – Base diameter

	pulley_tol (float) – Tolerance for radius (it will substracted to the radius)
twice for the diameter. Or added if a shape to substract

	pulley_pos_h (float) – position in mm of the pulley along the shaft

	0: it is at the base of the shaft

	-1: the top of the pulley will be aligned with the end of the shaft

	axis_d (FreeCAD.Vector) – Depth vector of coordinate system (perpendicular to the height)

	axis_w (FreeCAD.Vector) – Width vector of coordinate system
if V0: it will be calculated using the cross product: axis_h x axis_d

	axis_h (FreeCAD.Vector) – Height vector of coordinate system

	pos_d (int) – location of pos along the axis_d see drawing

	Locations coinciding with the motor

	0: at the axis of the shaft

	1: at the radius of the shaft

	2: at the end of the circle(cylinder) at the base of the shaft

	3: at the bolts

	4: at the end of the piece

	Locations of the pulley

	5: at the inner radius

	7: at the external radius

	7: at the pitch radius (outside the toothed part)

	8: at the end of the base (not the toothed part)

	9: at the end of the flange (V0 is no flange)

	pos_w (int) – location of pos along the axis_w see drawing

	Same locations of pos_d

	pos_h (int) – location of pos along the axis_h, see drawing

	0: at the base of the shaft (not including the circle at the base
of the shaft)

	1: at the end of the circle at the base of the shaft

	2: at the end of the shaft

	3: at the end of the bolt holes

	4: at the bottom base

	5: at the end of the rear shaft, if no rear shaft, it will be
the same as pos_h = 4

	6: at the base of the pulley

	7: at the base of the bottom flange of the pulley

	8: at the base of the toothed part of the pulley

	9: at the center of the toothed part of the pulley

	10: at the end (top) of the toothed part of the pulley

	11: at the end (top) of the pulley of the pulley

	pos (FreeCAD.Vector) – Position of the model

	name (str) – Object name

	
class beltcl.BeltClamp(fc_fro_ax, fc_top_ax, base_h=2, base_l=0, base_w=0, bolt_d=3, bolt_csunk=0, ref=1, pos=FreeCAD.Vector, extra=1, wfco=1, intol=0, name='belt_clamp')

	Similar to shp_topbeltclamp, but with any direction, and
can have a base
Creates a shape of a belt clamp. Just the rail and the cylinder
and may have a rectangular base
just one way: 2 clamp blocks
It is referenced on the base of the clamp, but it may have 5 different
positions

	Parameters

	
	fc_fro_ax (FreeCAD.Vector) – FreeCAD.Vector pointing to the front, see pricture

	fc_top_ax (FreeCAD.Vector) – FreeCAD.Vector pointing to the top, see pricture

	base_h (float) – Height of the base,

	if 0 and bolt_d=0: no base

	if 0 and bolt_d!= 0: minimum base to have the bolt head and
not touching with the belt (countersunk) if bolt_csunk > 0

	base_l (float) – Length of the base, if base_h not 0.

	if 0 and bolt_d=0: will have the minimum length, defined by the
clamp

	if 0 and bolt_d!=0: will have the minimum length, defined by
the clamp plus the minimum separation due to the bolt holes

	base_w (float) – Width of the base, if base_h not 0.

	bolt_d (float) – Diameter of the bolts, if zero, no bolts

	bolt_csunk (float) – If the bolt is countersunk

	if >0: there is a whole to countersink the head of the bolt
there will be an extra height if not enough
bolt_d has to be > 0

	if 0: no whole for the height, and no extra height

	if >0, the size will determine the minimum height of the
base, below the countersink hole

	ref (int) – Reference of the position (see picture below)

	extra (float) – If extra, it will have an extra height below the zero height,
this is to be joined to some other piece

	wfco (int) –
	if 1: With FreeCad Object: a freecad object is created

	if 0: only the shape

	intol (float) – Internal extra tolerance to the dimension CB_IW, substracting
to CB_W. If negative, makes CB_IW smaller.

	name (str) – Name of the freecad object, if created

 fc_top_ax
 :
 _____ _:_
 | | | : | + C_H
 ____|_____|_____|_:_|____.....:
 | :: : :: | + base_h
fc_fro_ax...|_::_______________*___::_|....:

 CLAMPBLOCK
 CB * ref

 clamp2end clamp2end
 ..+... ...+...
 : : : :
 : bolt2end : bolt2end
 :+..+. :.+..+.
 : : : : : :
 :__:__:______________:__:__:...................
 | : ____ ___ | :
 CB_W { | : |____| / \ | :
 CB_IW { | O ____ | * | O | CCYL: CLAMPCYL + base_w
 CB_W { | |____| ___/ | :
 |__________________________|..................:
 : : : : : :
 : :CB_L:.CS..:.: :
 : + :
 : CCYL_R :
 :......... base_l:

 | ____ ___ |
 CB_W { | |____| / \ |
 CB_IW { 4 3 2____ | 1 | 5 6 CCYL: CLAMPCYL
 CB_W { | |____| ___/ |
 |__________________________|
 : :
 :CB_L:.CS.:

 References:
 1: cencyl: center of cylinder
 2: frontclamp: front of the clamps
 3: frontbolt
 4: frontbase
 5: backbolt
 6: backbase

 fc_top_ax
 :
 _____ _:_
 | | | : |
 ____|_____|_____|_:_|____
 |:..: : :..:|.....
fc_fro_ax...|_::_______________*___::_|....+ bolt_csunk (if not 0)

	
class beltcl.DoubleBeltClamp(axis_h=FreeCAD.Vector, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, base_h=2, base_l=0, base_w=0, bolt_d=3, bolt_csunk=0, ref=1, pos=FreeCAD.Vector, extra=1, wfco=1, intol=0, name='double_belt_clamp')

	Similar to BeltClamp, but in two ways
Creates a shape of a double belt clamp.
positions

	Parameters

	
	fc_fro_ax (FreeCAD.Vector) – FreeCAD.Vector pointing to the front, see pricture

	fc_top_ax (FreeCAD.Vector) – FreeCAD.Vector pointing to the top, see pricture

	base_h (float) – Height of the base,

	if 0 and bolt_d=0: no base

	if 0 and bolt_d!= 0: minimum base to have the bolt head and
not touching with the belt (countersunk) if bolt_csunk > 0

	base_l (float) – Length of the base, if base_h not 0.

	if 0 and bolt_d=0: will have the minimum length, defined by the
clamp

	if 0 and bolt_d!=0: will have the minimum length, defined by
the clamp plus the minimum separation due to the bolt holes

	base_w (float) – Width of the base, if base_h not 0.

	bolt_d (float) – Diameter of the bolts, if zero, no bolts

	bolt_csunk (float) – If the bolt is countersunk

	if >0: there is a whole to countersink the head of the bolt
there will be an extra height if not enough
bolt_d has to be > 0

	if 0: no whole for the height, and no extra height

	if >0, the size will determine the minimum height of the
base, below the countersink hole

	ref (int) – Reference of the position (see picture below)

	extra (float) – If extra, it will have an extra height below the zero height,
this is to be joined to some other piece

	wfco (int) –
	if 1: With FreeCad Object: a freecad object is created

	if 0: only the shape

	intol (float) – Internal extra tolerance to the dimension CB_IW, substracting
to CB_W. If negative, makes CB_IW smaller.

	name (str) – Name of the freecad object, if created

 axis_h
 :
 _____ _:_ _:_ _____
 | | | : | | : | | | + C_H
 ____|_____|_____|_:_|_________|_:_|_____|_____|____.....:
 | :: : | | : :: | + base_h
axis_d...|_::_______________*__|_______|__*_______________::_|.:

 clamp2end clamp2end
 ...+... ...+...
 : : : :
 : bolt2end _______ : bolt2end
 :+..+.: | | :+..+.:
 : : : | O | : : :
 :__:__:_______________|_______|_______________:__:__:...................
 | : ____ ___ ___ ____ | :
CB_W { | : |____| / \ / \ |____| | :
CB_IW { | O ____ | * | | * | ____ O | CCYL: CLAMPCYL + base_w
CB_W { | |____| ___/ ___/ |____| | :
 |___|..................:
 : : : : : | | :
 : : : : : | O | :
 : :CB_L:.CS..:.: |_______| :
 : + :
 : CCYL_R :
 :...................... base_l:

 | |
 | O |
 _____________________|_______|______________________
 | ____ ___ ___ ____ |
CB_W { | |____| / \ / \ |____| |
CB_IW { -4 -3 -2____ |-1 | 0 | 1 | ____2 3 4
CB_W { | |____| ___/ ___/ |____| |
 |___|
 | |
 | O |
 |_______|
 1: center
 2: center of left cylinder
 3: center of right cylinder
 4: front of the left clamps
 5: front of the right clamps
 6: left bolt
 7: right bolt
 8: left base
 9: right base

 ___3___
 | |
 | 2 |
 _____________________|_______|______________________
 | ____ ___ ___ ____ |
CB_W { | |____| . . / \ . 1 . / \ . . |____| |
CB_IW { | ____ | | 0 | | ____ |
CB_W { | |____| . . ___/ . -1 . ___/ . . |____| |
 |___|
 | |
 | -2 |
 |__-3___|
 1: center
 2: bolt up
 3: bolt down
 4: up base
 5: down base

	
class fc_clss.Din934Nut(metric, axis_d_apo=0, h_offset=0, axis_h=FreeCAD.Vector, axis_d=None, axis_w=None, pos_h=0, pos_d=0, pos_w=0, pos=FreeCAD.Vector, model_type=0, name='')

	Din 934 Nut

	Parameters

	
	metric (int (maybe float: 2.5)) –

	axis_h (FreeCAD.Vector) –

	axis_d_apo (int) –
	0: default: axis_d points to the vertex

	1: axis_d points to the center of a side

	h_offset (float) – Distance from the top, just to place the Nut, see pos_h
if negative, from the bottom

	0: default

	axis_h – Vector along the axis, height

	axis_d (FreeCAD.Vector) – Vector along the first vertex, a direction perpendicular to axis_h.
It is not necessary if pos_d == 0.
It can be None, but if None, axis_w has to be None

	axis_w (FreeCAD.Vector) – Vector along the cylinder radius,
a direction perpendicular to axis_h and axis_d.
It is not necessary if pos_w == 0.
It can be None

	pos_h (int) – Location of pos along axis_h

	0: at the center

	-1: at the base

	1: at the top

	-2: at the base + h_offset

	2: at the top + h_offset

	pos_d (int) – Location of pos along axis_d (-2, -1, 0, 1, 2)

	0: pos is at the circunference center (axis)

	1: pos is at the inner circunsference, on axis_d, at r_in from the
circle center

	2: pos is at the apothem, on axis_d

	3: pos is at the outer circunsference, on axis_d, at r_out from the
circle center

	pos_w (int) – Location of pos along axis_w (-2, -1, 0, 1, 2)

	0: pos is at the circunference center

	1: pos is at the inner circunsference, on axis_w, at r_in from the
circle center

	2: pos is at the apothem, on axis_w

	3: pos is at the outer circunsference, on axis_w, at r_out from the
center

	pos (FreeCAD.Vector) – Position of the prism, taking into account where the center is

	model_type (0) – Not to print, just an outline

	name (str) – Name of the bolt

	
class fc_clss.Din125Washer(metric, axis_h, pos_h, tol=0, pos=FreeCAD.Vector, model_type=0, name='')

	Din 125 Washer, this is the regular washer

	Parameters

	
	metric (int (maybe float: 2.5)) –

	axis_h (FreeCAD.Vector) – Vector along the cylinder height

	pos_h (int) – Location of pos along axis_h (0,1)

	0: the cylinder pos is at its base

	1: the cylinder pos is centered along its height

	tol (float) – Tolerance for the inner and outer radius.
It is the tolerance for the diameter, so the radius will be added/subs
have of this tolerance.

	tol will be added to the inner radius (so it will be larger).

	tol will be substracted to the outer radius (so it will be smaller).

	model_type (int) – Type of model:

	0: exact

	1: outline

	pos (FreeCAD.Vector) – Position of the cylinder, taking into account where the center is

Note

All the parameters and attributes of father class CylHole

	
metric

	Metric of the washer

	Type

	int or float (in case of M2.5) or even str for inches ?

	
model_type

	
	Type

	int

	
class fc_clss.Din9021Washer(metric, axis_h, pos_h, tol=0, pos=FreeCAD.Vector, model_type=0, name='')

	Din 9021 Washer, this is the larger washer

	Parameters

	
	metric (int (maybe float: 2.5)) –

	axis_h (FreeCAD.Vector) – Vector along the cylinder height

	pos_h (int) – Location of pos along axis_h (0,1)

	0: the cylinder pos is at its base

	1: the cylinder pos is centered along its height

	tol (float) – Tolerance for the inner and outer radius.
It is the tolerance for the diameter, so the radius will be added/subs
have of this tolerance

	tol will be added to the inner radius (so it will be larger)

	tol will be substracted to the outer radius (so it will be smaller)

	model_type (int) – Type of model:

	0: exact

	1: outline

	pos (FreeCAD.Vector) – Position of the cylinder, taking into account where the center is

Note

All the parameters and attributes of father class CylHole

	
metric

	Metric of the washer

	Type

	int or float (in case of M2.5) or even str for inches ?

	
model_type

	
	Type

	int

	
class fc_clss.Din912Bolt(metric, shank_l, shank_l_adjust=0, shank_out=0, head_out=0, axis_h=FreeCAD.Vector, axis_d=None, axis_w=None, pos_h=0, pos_d=0, pos_w=0, pos=FreeCAD.Vector, model_type=0, name='')

	Din 912 bolt. hex socket bolt

	Parameters

	
	metric (int (may be float: 2.5) –

	shank_l (float) – length of the bolt, not including the head

	shank_l_adjust (int) –
	0: shank length will be the size of the parameter shank_l

	-1: shank length will be the size of the closest shorter or equal
to shank_l available lengths for this type of bolts

	1: shank length will be the size of the closest larger or equal
to shank_l available lengths for this type of bolts

	shank_out (float) – Distance to the end of the shank, just for positioning, it doesnt
change shank_l

	0: default

Note

I dont think it is necessary, but just in case

	head_out (float) – Distance to the end of the head, just for positioning, it doesnt
change head_l

	0: default

Note

I dont think it is necessary, but just in case

	axis_h (FreeCAD.Vector) – Vector along the axis of the bolt, pointing from the head to the shank

	axis_d (FreeCAD.Vector) – Vector along the radius, a direction perpendicular to axis_h
If the head is hexagonal, the direction of one vertex

	axis_w (FreeCAD.Vector) – Vector along the cylinder radius,
a direction perpendicular to axis_h and axis_d.
It is not necessary if pos_w == 0.
It can be None

	pos_h (int) – Location of pos along axis_h

	0: top of the head, considering head_out,

	1: position of the head not considering head_out
if head_out = 0, it will be the same as pos_h = 0

	2: end of the socket, if no socket, will be the same as pos_h = 0

	3: union of the head and the shank

	4: where the screw starts, if all the shank is screwed, it will be
the same as pos_h = 2

	5: end of the shank, not considering shank_out

	6: end of the shank, if shank_out = 0, will be the same as pos_h = 5

	7: top of the head, considering xtr_head_l, if xtr_head_l = 0
will be the same as pos_h = 0

	pos_d (int) – Location of pos along axis_d (symmetric)

	0: pos is at the central axis

	1: radius of the shank

	2: radius of the head

	pos_w (int) – Location of pos along axis_d (symmetric)

	0: pos is at the central axis

	1: radius of the shank

	2: radius of the head

	pos (FreeCAD.Vector) – Position of the bolt, taking into account where the pos_h, pos_d, pos_w
are

	model_type (0) – Not to print, just an outline

	name (str) – Name of the bolt

Optical

	
comp_optic.f_breadboard(d_breadboard, length, width, cl=1, cw=1, ch=1, fc_dir_h=FreeCAD.Vector, fc_dir_w=FreeCAD.Vector, pos=FreeCAD.Vector, name='breadboard')

	
	Parameters

	
	d_breadboard (dict) – Dictionary with the values

	length (float) –

	width (float) –

	cl (int) –
	1: the length dimension is centered

	0: it is not centered

	cw (int) –
	1: the width dimension is centered

	0: it is not centered

	ch (int) –
	1: the height dimension is centered

	0: it is not centered

	fc_dir_h (FreeCAD.Vector) – Vector with the direction of the height

	fc_dir_w (FreeCAD.Vector) – Vector with the direction of the width

	pos (FreeCAD.Vector) – Placement of the model

	name (str) – object name

	Returns

	Object with the sape of a BreadBoard

	Return type

	FreeCAD Object

	
comp_optic.f_cagecube(d_cagecube, axis_thru_rods='x', axis_thru_hole='y', name='cagecube', toprint_tol=0)

	Creates a cage cube, it creates from a dictionary

	Parameters

	
	d_cagecube – Dictionary with the dimensions of the cage cube,
defined in kcomp_optic.py

	axis_thru_rods (str) – Direction of rods: ‘x’, ‘y’, ‘z’

	axis_thru_hole (str) – Direction big thru_hole: ‘x’, ‘y’, ‘z’.

Note

Cannot be the same as axis_thru_rods
There are 6 posible orientations:
Thru-rods can be on X, Y or Z axis
thru-hole can be on X, Y, or Z axis, but not in the same as thru-rods

	toprint_tol (float) –
	0, dimensions as they are.

	>0 value of tolerances of the holes.
multiplies the normal tolerance in kcomp.TOL

	Returns

	
	CageCube. The freeCAD object can be accessed by the

	attribute .fco

	
comp_optic.f_cagecubehalf(d_cagecubehalf, axis_1='x', axis_2='y', name='cagecubehalf')

	Dreates a half cage cube: 2 perpendicular sides, and a 45 degree angle
side. It creates from a dictionary

	Parameters

	
	d_cagecubehalf (dict) – Dictionary with the dimensions of the cage cube,
defined in kcomp_optic.py

	axis_1 (str) – Direction of the first right side:
‘x’, ‘y’, ‘z’, ‘-x’, ‘-y’, ‘-z’

	axis_2 (str) – Direction big the other right side:
‘x’, ‘y’, ‘z’, ‘-x’, ‘-y’, ‘-z’

Note

Cannot be the same as axis_1, or its negated. Has to be perpendicular
There are 24 posible orientations:
6 posible axis_1 and 4 axis_2 for each axis_1

	name (str) – Name of the freecad object

	
class comp_optic.Lb1cPlate(d_plate, fc_axis_h=FreeCAD.Vector, fc_axis_l=FreeCAD.Vector, ref_in=1, pos=FreeCAD.Vector, name='lb1c_plate')

	Creates a LB1C/M plate from thorlabs. The plate is centered

 fc_axis_l: axis on the large separation
 |
 |
 :-- sy_hole_sep -:
 : :
 :cbore_hole_sep_s:
 : : : :

| O O | -------------------
| 0 0 | :
| | : :
| | : :
| () | +sym_hole_sep + cbore_hole_sep_l
| | : :
| 0 0 | :
| O O | -------------------
|______________________|

| :: : ::..: | fc_axis_h
|__::___H______________| if ref_in=1 | -> h=0

________________________ if ref_in=0 -> h=0
| :: : ::..: | |
|__::___H______________| V fc_axis_h

	Parameters

	
	d_plate (dict) – Dictionary with the dimensions

	fc_axis_h (FreeCAD.Vector) – Direction of the vertical (thickness)

	fc_axis_l (FreeCAD.Vector) – Direction of the large distance of
the counterbored asymetrical holes

	ref_in (int) –
	1: fc_axis_h starts on the inside to outside of the plate

	0: fc_axis_h starts on the outside to inside of the plate

	pos (FreeCAD.Vector) – Position of the center. The center is on the
center of the plate, but on the axis_h can be in either side
depending on ref_in

	name (str) – Name

	
class comp_optic.Lb2cPlate(fc_axis_h, fc_axis_l, cl=1, cw=1, ch=0, pos=FreeCAD.Vector, name='lb2c_plate')

	
Same as plate_lb2c, but it creates an object.

	fc_axis_h: FreeCAD.Vector
	Direction of the vertical (thickness)

	fc_axis_l: FreeCAD.Vector
	Direction of the large distance of
the counterbored asymetrical holes

	cl: int
	
	1: centered on the fc_axis_l direction

	cw: int
	
	1: centered on the axis_small direction (perpendicular to fc_axis_l
and fc_axis_h)

	ch: int
	
	1: centered on the vertical direction (thickness)

	pos: FreeCAD.Vector
	
Position of the center. The center is on the
center of the plate, but on the axis_h can be in either side
depending on ref_in

	name: str
	Name

	
comp_optic.lcp01m_plate(d_lcp01m_plate={'L': 71.11999999999999, 'chamfer_r': 2.0, 'mhole_d': 4.0, 'mhole_depth': 6.5, 'sym_hole_d': 6.0, 'sym_hole_sep': 60.0, 'thick': 12.7, 'thruhole_d': 51.689}, fc_axis_h=FreeCAD.Vector, fc_axis_m=FreeCAD.Vector, fc_axis_p=FreeCAD.Vector, cm=1, cp=1, ch=1, pos=FreeCAD.Vector, wfco=1, name='LCP01M_PLATE')

	Creates a lcp01m_plate side.

It creates from a dictionary

	Parameters

	
	d_lcp01m_plate (dict) – Dictionary with the dimensions of the plate
defined in kcomp_optic.py

	fc_axis_h (FreeCAD.Vector) – Direction of the vertical (thickness)
from the inside of the plate

	fc_axis_m (FreeCAD.Vector) – Direction of the mounting hole
goes in the mounting hole

	fc_axis_p (FreeCAD.Vector) – Perpendicular direction of
axis_h and axis_m, only used if not centered on this axis

	cm (int) –
	1: centered on the fc_axis_m direction (point 2)

	0: it will be on the mounting hole (point 1)

	cp (int) –
	1: centered on the perpendicular direction of fc_axis_m
and fc_axis_h), if 0, fc_axis_p needs to be defined

	0: points 5 (cm==0) or 6 (cm==1)

	ch (int) –
	1: centered on the vertical direction (thickness)

	pos (FreeCAD.Vector) – Position of the center.

	wfco (int) –
	1: a FreeCAD object is created

	0: only de shape is created

	name (str) – name of the freecad object (if created)

	
comp_optic.lcpb1m_base(d_lcpb1m_base={'d_lip': 2.5, 'd_mount': 8.9, 'd_tot': 15.2, 'h_slot': 3.8, 'h_sup': 8.9, 'h_tot': 10.8, 'l_mbolt_d': 4.0, 's_mholes_d': 3.0, 's_mholes_dist': 50.0, 'slot_d': 6.0, 'slot_dist': 100.0, 'w_sup': 82.6, 'w_tot': 120.7}, fc_axis_d=FreeCAD.Vector, fc_axis_w=FreeCAD.Vector, fc_axis_h=FreeCAD.Vector, ref_d=1, ref_w=1, ref_h=1, pos=FreeCAD.Vector, wfco=1, toprint=0, name='Lcpb1mBase')

	Creates a lcpb1m_base for plates side,
it creates from a dictionary

	Parameters

	
	d_lcpb1m_base (dict) – Dictionary with the dimensions

	fc_axis_d (FreeCAD.Vector) – Direction of the deep

	fc_axis_w (FreeCAD.Vector) – Direction of the width

	fc_axis_h (FreeCAD.Vector) – Direction of the height

	ref_d (int) – Position in the fc_axis_d:

	1: top side

	2: center

	3: lower side

	ref_w (int) – Postion in the fc_axis_w:

	1: center

	2: center in left slot

	3: left side

	ref_h (int) – Positionin the fc_axis_h:

	1: base

	2: top

	pos (FreeCAD.Vector) – Position of the center.

	wfco (int) –
	1: a FreeCAD object is created

	0: only de shape is created

	toprint (int) – 1 if you want to include a triangle between the shank and the
head to support the shank and not building the head on the
air using kcomp.LAYER3D_H

	name (str) – Name of the freecad object (if created)

	
comp_optic.PrizLed(fc_axis_led=FreeCAD.Vector, fc_axis_clear=FreeCAD.Vector, pos=FreeCAD.Vector, name='prizmatix_led')

	Creates the shape of a Prizmatix UHP-T-Led
The drawing is very rough, and the original drawing lacks many
dimensions

 ...22.... 50.........
 : : : :
 :________________ vtl:_________________:vtr.....
 : 10.5+ | | |___________ | | : :
 : :.| O M6 | | | | ____ | +25 :
 : | | | | | / \ | : :
 +39.5 | | | Fan | | | SM1 | |...: :
 :.......| O | | | | ____ / | :
 | | | | | | + 90
 | | |___________| | KEEP | :
 | | | | CLEAR | :
 | | | | | | | :
 | | | | V V | :
 | | | |_________________| :
 _____________|_| |_________________|.......:
 :
 :15: :
 : : V
 :__:__________________________ fc_axis_clear
 | | | |
 | O | | |
fc_axis_led| | | |
 <--- | | | |
 | | | |
 | | | |
 | O M6 | | |
 |______________|_|___________|
 : :
 :...........98.75............:

	Parameters

	
	fc_axis_led (FreeCAD.Vector) – Direction of the led

	fc_axis_clear (FreeCAD.Vector) – Direction of the arrows
indicating to keep clear

	pos (FreeCAD.Vector) – Position of the LED, on the center of the SM1 thread

	name (str) – Object name

	
comp_optic.SM1TubelensSm2(sm1l_size, fc_axis=FreeCAD.Vector, ref_sm1=1, pos=FreeCAD.Vector, ring=1, name='tubelens_sm1_sm2')

	Creates a componente formed by joining:
the lens tube SM1LXX + SM1A2 + SM2T2, so we have:

	on one side a SM1 external thread

	on the other side a SM2 external thread

And inside we have a SM1 tube lens
Since there are threads, they may be inserted differently, so
size may vary. Therefore, size are approximate, and also, details
are not drawn, such as threads, or even the part that contains the
thread is not drawn:

 lens tube _HH :
 ||..| : :
LED SM1LXX || | : :
_____ ______________|| | : :
 __| : _|..............|| | : :
 | : | : : || | : :
 | 30.5+ | : SM1 : || | +55.9 + 57.2
 | : | : : || | :SM2_TLENS_D :
 |__ : |_:............:.|| | : :
_____| :....|______________|| | : :
 : : || | : :
 :3: Lext ||..| : :
 ||__|..........: :
 SM1_TLENS_D=30.5 HH:
 0.7: 5.6

So it will be:

 lens tube _HH
 ||..|
 SM1LXX || |
 ______________|| |
..............		
SM1		
..............		

 || |
 Lext ||..|
 ||__|
 HH

The 3mm thread on the left is not drawn

	Parameters

	
	sm1l_size (float) – Length of the side of the cube (then it will be halved)

	fc_axis (FreeCAD.Vector) – Direction of the tube lens: FreeCAD.Vector

	axis_2 (FreeCAD.Vector) – Direction big the other right side:

	ref_sm1 (int) –
	1: if the position is referred to the sm1 end

	0: if the position is referred to the ring end

	pos (FreeCAD.Vector) – Position of the object

	ring (int) –
	1: if there is ring

	0: there is no ring, so just the thread, at it is not drawn

	name (str) – Name of the freecad object

	
comp_optic.ThLed30(fc_axis=FreeCAD.Vector, fc_axis_cable=FreeCAD.Vector, pos=FreeCAD.Vector, name='thled30')

	Creates the shape of a Thorlabs Led with 30.5 mm Heat Sink diameter
The drawing is very rough

 :....35...:
 : :
 : :
 : Cable :
 | | diam ? :
 | | :
 ____|_|________:..................
 __| | | | | | :
 : | : | | | | | :
 : | : | | | | | :
 <- ? + C| 0 | | | | | + 30.5
fc_axis : | | | | | | :
 :....|__ | | | | | :
 : |_______________|.................:
 : : :
 : :......50.......:
 : :
 :........60.4.......:
 : :
 : :
 : heatsinks_totl

The reference is marked with a 0 in the drawing

	Parameters

	
	fc_axis (FreeCAD.Vector) – axis on the direction of the led

	fc_axis_cable (FreeCAD.Vector) – axis on the direction of the cable

	pos (FreeCAD.Vector) – Placement of the object

	name (str) – Object name

Functions details

fcfun

	
class fcfun.NutHole(nut_r, nut_h, hole_h, name, extra=1, nuthole_x=1, cx=0, cy=0, holedown=0)

	Adding a Nut hole (hexagonal) with a prism attached to introduce the nut.
Tolerances are included

0 1
 /\ __
| | | |
| | | |
|__|__ z = 0 | | -- z = 0
 \/

	Parameters

	
	nut_r (float) – Circumradius of the hexagon

	nut_h (float) – Height of the nut, usually larger than the actual nut height, to be
able to introduce it

	hole_h (float) – The hole height, from the center of the hexagon to the side it will
see light

	name (str) – Name of the object (string)

	extra (int) –
	1 if you want 1 mm out of the hole, to cut

	nuthole_x (int) –
	1 : if you want that the nut height to be along the X axis
and the 2*apotheme on the Y axis
ie. Nut hole facing X

	0 : if you want that the nut height to be along the Y axis
ie. Nut hole facing Y

	cx (int) –
	1 : if you want the coordinates referenced to the x center of the piece
it can be done because it is a new shape formed from the union

	cy (int) –
	1 : if you want the coordinates referenced to the y center of the piece

	holedown (int) –
	I THINK IS THE OTHER WAY; CHECK
	
	0: the z0 is the bottom of the square (hole)

	1: the z0 is the center of the hexagon (nut)
it can be done because it is a new shape formed from the union

	Returns

	FreeCAD object of a nut hole

	Return type

	FreeCAD Object

	
fcfun.add2CylsHole(r1, h1, r2, h2, thick, normal=FreeCAD.Vector, pos=FreeCAD.Vector)

	Creates a piece formed by 2 hollow cylinders

 :.. h1+..h2..:
 : : :
 ...:___________: :
thick...|.......... | :
 | : |______:.....
 | :........| :
 | : | + r2
 | : |....:
 | :........| :
 | : ______| + r1
 |.........: | :
 |___________|...........:

	Parameters

	
	r1 (float) – Radius of the 1st cylinder. The first cylinder relative to
the position pos

	h1 (float) – Height of the 1st cylinder (seen from outside)

	r2 (float) – Radius of the 2nd cylinder

	h2 (float) – Height of the 2nd cylinder (seen from outside)

	normal (FreeCAD.Vector) – Direction of the height

	pos (FreeCAD.Vector) – Position of the center

	Returns

	FreeCAD Shape of a two cylinders

	Return type

	Shape

	
fcfun.add3CylsHole(r1, h1, r2, h2, rring, hring, thick, normal=FreeCAD.Vector, pos=FreeCAD.Vector)

	Creates a piece formed by 2 hollow cylinders, and a ring
on the side of the larger cylinder

 ref
 _:.. h1+..h2..:
 | | : :
 ...| |___________: :
thick...|.|.......... | :
 | | : |______:.....
 | | :........| :
 | | : | + r2
 * | : |....:.......
 | | :........| : :
 | | : ______| + r1 :
 |.|.........: | : :
 | |___________|...........: + rring
 | | :
 |_|..............................:
 : :
 + hring

	Parameters

	
	r1 (float) – Radius of the 1st cylinder. The first cylinder relative to
the position pos (if this is larger than r2, the ring will go first)

	h1 (float) – Height of the 1st cylinder (seen from outside)

	r2 (float) – Radius of the 2nd cylinder

	h2 (float) – Height of the 2nd cylinder (seen from outside)

	rring (float) – Radius of the ring, it has to be larger than r1, and r2

	hring (float) – Height of the ring, it has to be larger than r1, and r2

	thick (float) – Thickness of the walls, excluding the ring

	normal (FreeCAD.Vector) – Direction of the height

	pos (FreeCAD.Vector) – Position of the center

	Returns

	FreeCAD Shape of a three cylinders

	Return type

	Shape

	
fcfun.addBolt(r_shank, l_bolt, r_head, l_head, hex_head=0, extra=1, support=1, headdown=1, name='bolt')

	Creates the hole for the bolt shank and the head or the nut
Tolerances have to be included

	Parameters

	
	r_shank (float) – Radius of the shank (tolerance included)

	l_bolt (float) – Total length of the bolt: head & shank

	r_head (float) – Radius of the head (tolerance included)

	l_head (float) – Length of the head

	hex_head (int) –
	Inidicates if the head is hexagonal or rounded
	
	1: hexagonal

	0: rounded

	h_layer3d (float) – Height of the layer for printing, if 0, means that the
support is not needed

	extra (int) – 1 if you want 1 mm on top and botton to avoid cutting on the same
plane pieces after making cuts (boolean difference)

	support (int) – 1 if you want to include a triangle between the shank and the
head to support the shank and not building the head on the
air using kcomp.LAYER3D_H

	headdown (int) –
	1 if the head is down.

	0 if it is up

	Returns

	FreeCAD Object of a bolt

	Return type

	FreeCAD Object

	
fcfun.addBoltNut_hole(r_shank, l_bolt, r_head, l_head, r_nut, l_nut, hex_head=0, extra=1, supp_head=1, supp_nut=1, headdown=1, name='bolt')

	Creates the hole for the bolt shank, the head and the nut.
The bolt head will be at the botton, and the nut will be on top
Tolerances have to be already included in the argments values

	Parameters

	
	r_shank (float) – Radius of the shank (tolerance included)

	l_bolt (float) – Total length of the bolt: head & shank

	r_head (float) – Radius of the head (tolerance included)

	l_head (float) – Length of the head

	r_nut (float) – Radius of the nut (tolerance included)

	l_nut (float) – Length of the nut. It doesn’t have to be the length of the nut
but how long you want the nut to be inserted

	hex_head (int) –
	Inidicates if the head is hexagonal or rounded
	
	1: hexagonal

	0: rounded

	zpos_nut (float) – Inidicates the height position of the nut, the lower part

	h_layer3d (float) – Height of the layer for printing,
if 0, means that the support is not needed

	extra (int) – 1 if you want 1 mm on top and botton to avoid cutting on the same
plane pieces after makeing differences

	support (int) – 1 if you want to include a triangle between the shank and the
head to support the shank and not building the head on the air
using kcomp.LAYER3D_H

	Returns

	FreeCAD Object of a Nut Hole

	Return type

	FreeCAD Object

	
fcfun.addBox(x, y, z, name, cx=False, cy=False)

	Adds a box, centered on the specified axis x and/or y, with its
Placement and Rotation at zero. So it can be referenced absolutely from
its given position

	Parameters

	
	x (float) – Length

	y (float) – Width

	z (float) – Height

	name (str) – Object Name

	cx (Boolean) – Centered in axis x

	cy (Boolean) – Centered in axis y

	Returns

	FreeCAD.Object with the shape of a box

	Return type

	FreeCAD.Object

	
fcfun.addBox_cen(x, y, z, name, cx=False, cy=False, cz=False)

	Adds a box, centered on the specified axis, with its
Placement and Rotation at zero. So it can be referenced absolutely from
its given position

	Parameters

	
	x (float) – Length

	y (float) – Width

	z (float) – Height

	name (str) – Object Name

	cx (Boolean) – Centered in the X axis

	cy (Boolean) – Centered in the Y axis

	cz (Boolean) – Centered in the Z axis

	Returns

	FreeCAD.Object with the shape of a box

	Return type

	FreeCAD.Object

	
fcfun.addCyl(r, h, name)

	Add cylinder

	Parameters

	
	r (float) – Radius

	h (float) – Height

	Returns

	Cylinder

	Return type

	FreeCAD Object

	
fcfun.addCylHole(r_ext, r_int, h, name, axis='z', h_disp=0)

	Add cylinder, with inner hole:

	Parameters

	
	r_ext (float) – External radius,

	r_int (float) – Internal radius,

	h (float) – Height

	name (str) – Object name

	axis (str) –
	‘x’, ‘y’ or ‘z’
	
	’x’ will along the x axis

	’y’ will along the y axis

	’z’ will be vertical

	h_disp (int) –
	Displacement on the height.
	
	if 0, the base of the cylinder will be on the plane

	if -h/2: the plane will be cutting h/2

	Returns

	Cylinder with hole

	Return type

	FreeCAD.Object

	
fcfun.addCylHolePos(r_out, r_in, h, name, normal=FreeCAD.Vector, pos=FreeCAD.Vector)

	Same as addCylHole, but avoiding the creation of many FreeCAD objects

Add cylinder, with inner hole

	Parameters

	
	r_out (float) – Outside radius

	r_in (float) – Inside radius

	h (float) – Height

	name (str) – Object name

	normal (FreeCAD.Vector) – FreeCAD.Vector pointing to the normal (if its module is not one,
the height will be larger than h

	pos (FreeCAD.Vector) – Position of the cylinder

	Returns

	FreeCAD Shape of a cylinder with hole

	Return type

	Shape

	
fcfun.addCylPos(r, h, name, normal=FreeCAD.Vector, pos=FreeCAD.Vector)

	Same as addCyl_pos, but avoiding the creation of many FreeCAD objects

	Parameters

	
	r (float) – Radius,

	h (float) – Height

	name (str) – Objet name

	normal (FreeCAD.Vector) – FreeCAD.Vector pointing to the normal (if its module is not one,
the height will be larger than h

	pos (FreeCAD.Vector) – Position of the cylinder

	Returns

	Cylinder

	Return type

	FreeCAD Object

	
fcfun.addCyl_pos(r, h, name, axis='z', h_disp=0)

	Add cylinder in a position. So it is in a certain position, with its
Placement and Rotation at zero. So it can be referenced absolutely from
its given position

	Parameters

	
	r (float) – Radius

	h (float) – Height

	name (str) – Name

	axis (str) –
	‘x’, ‘y’ or ‘z’
	
	’x’ will along the x axis

	’y’ will along the y axis

	’z’ will be vertical

	h_disp (int) –
	Displacement on the height.
	
	if 0, the base of the cylinder will be on the plane

	if -h/2: the plane will be cutting h/2

	Returns

	Cylinder

	Return type

	FreeCAD Object

	
fcfun.add_fcobj(shp, name, doc=None)

	Just creates a freeCAD object of the shape, just to save one line

	
fcfun.aluprof_vec(width, thick, slot, insquare)

	Creates a wire (shape), that is an approximation of a generic alum
profile extrusion

 Y
 |_ X
:----- width ----:
: slot :
: :--: :
:______: :______:
| __| |__ |
| |\ \ / /| |
|_| \ ____/ / |_|
 | | insquare
 | () |indiam :
 _ | ____ |:
| | / / \ \ | |
| |/ /_ _\ \| |
|______| |______|thick

 Y values:
: 3 _____ 4
: |_1 7| 1,2: width/2 - thick
: 2 / /|_|7: width/2- (thick+thick*cos45)
:___/ / 6 5 5,6: slot/2.
: 0 |8 :8:insquare/2-thick*cos45 0:insquare/2 :
:.....|......:..........................:.............:

	Parameters

	
	width (float) – The total width of the profile, it is a square

	thick (float) – The thickness of the side

	slot (float) – The width of the rail

	insquare (float) – The width of the inner square

	indiam (float) – The diameter of the inner hole

	Returns

	The points of the aluminum profile positive quadrant

	Return type

	Vector

	
fcfun.calc_desp_ncen(Length, Width, Height, vec1, vec2, cx=False, cy=False, cz=False, H_extr=False)

	Similar to calc_rot, but calculates de displacement, when we don’t want
to have all of the dimensions centered
First vector original direction (x,y,z) is (1,0,0)
Second vector original direction (x,y,z) is (0,0,-1)
The arguments vec1, vec2 are tuples (x,y,z) but they may be also
FreeCAD.Vectors

 Z . Y length (x) = 1
: _ . width (y) = 2
: / /| heigth (z) = 3
:/_ / |
| | | vec1 original (before rotation) = VX
| | / vec2 original (before rotation) = -VZ
|__|/..............X

Example after rotation and change position

Z . Y length (x) = 3
: ____. width (y) = 2
: / /| heigth (z) = 1
:/___ // vec1 = VZ
|____|/..............X vec2 = VX

So we have to move X its original heith (3), otherwise it would
 be on the negative side, like this

 Z
 : . Y length (x) = 3
 _:__. width (y) = 2
 / : /| heigth (z) = 1
 /___:// vec1 = VZ
|____|/..............X vec2 = VX

the picture is wrong, because originally it is centered, that's
why the position is moved only half of the dimension. But the concept
is valid

	Parameters

	
	vec1 (tuples) – Have to be on the axis: x, -x, y, -y, z, -z

vec1 can be (0,0,0): it means that it doesnt matter how it is rotated

	vec2 (tuples) – Have to be on the axis: x, -x, y, -y, z, -z

	Length (float) – Original dimension on X

	Width (float) – Original dimension on Y

	Height (float) – Original dimension on Z

	cx (boolean) – Position centered or not

	cy (boolean) – Position centered or not

	cz (boolean) – Position centered or not

	Returns

	Vector of the displacement

	Return type

	FreeCAD.Vector

	
fcfun.calc_rot(vec1, vec2)

	Having an object with an orientation defined by 2 vectors
the vectors a tuples, nor FreeCAD.Vectors
use the wrapper fc_calc_rot to have FreeCAD.Vector arguments
First vector original direction (x,y,z) is (1,0,0)
Second vector original direction (x,y,z) is (0,0,-1)
we want to rotate the object in an ortoghonal direction. The vectors
will be in -90, 180, or 90 degrees.
this function returns the Rotation given by yaw, pitch and roll
In case vec1 is (0,0,0), means that it doesn’t matter that vector.
Yaw is the rotation of Z axis. Positive Yaw is like screwing up

 Y Y Y
 |_X : yaw=0 : yaw=60
 / : : /
 Z : : /
 : : /
 :________.... X :/............ X

 Z Y Z Z
 |/_ X : pitch=0 : pitch=-60
 : : /
 : : /
 : : /
 :________.... X :/............ X

 Z Z
 Z : roll=0 : roll=-60
 |_Y : : /
 / : : /
X : : /
 :________.... Y :/............ Y

	Parameters

	
	vec1 (tuples) – Direction

	vec2 (tuples) – Direction

	Returns

	

	Return type

	FreeCAD.Rotation

	
fcfun.calc_rot_z(v_refz, v_refx)

	Calculates de rotation like calc_rot. However uses a different
origin axis. calc_rot uses:
vec1 original direction (x,y,z) is (0,0,1)
vec2 original direction (x,y,z) is (1,0,0)
So it makes a change of axis before calling calc_rot

	Parameters

	
	v_refz (tuple or FreeCAD.Vector) – Vector indicating the rotation from (0,0,1) to v_refz

	v_refx (tuple or FreeCAD.Vector) – Vector indicating the rotation from (1,0,0) to v_refx

	Returns

	

	Return type

	FreeCAD.Rotation

	
fcfun.edgeonaxis(edge, axis)

	It tells if an edge is on an axis

	Parameters

	
	edge (Edge) – A FreeCAD edge, with its vertexes

	axis (str) – ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’

	Returns

	True: edge on an axis
False: edge not on an axis

	Return type

	boolean

	
fcfun.equ(x, y)

	Compare numbers that are the same but not exactly the same

	
fcfun.fc_calc_desp_ncen(Length, Width, Height, fc_vec1, fc_vec2, cx=False, cy=False, cz=False, H_extr=False)

	Same as calc_desp_ncen but using FreeCAD.Vectors arguments

	
fcfun.fc_calc_rot(fc_vec1, fc_vec2)

	Same as calc_rot but using FreeCAD.Vectors arguments

	
fcfun.fc_isonbase(fcv)

	Just tells if a vector has 2 of the coordinates zero
so it is on just a base vector

	
fcfun.fc_isparal(fc1, fc2)

	Return 1 if fc1 and fc2 are paralell (colinear), 0 if they are not

	Parameters

	
	fc1 (FreeCAD.Vector) – Firs vector

	fc2 (FreeCAD.Vector) – Second vector

	Returns

	
	* 1 if fc1 and fc2 are parallel

	* 0 if they are not

	
fcfun.fc_isparal_nrm(fc1, fc2)

	Very similar to fc_isparal, but in this case the arguments are normalized
so, less operations to do.
return 1 if fc1 and fc2 are paralell (colinear), 0 if they are not

	Parameters

	
	fc1 (FreeCAD.Vector) – Firs vector

	fc2 (FreeCAD.Vector) – Second vector

	Returns

	
	* 1 if fc1 and fc2 are parallel

	* 0 if they are not

	
fcfun.fc_isperp(fc1, fc2)

	Return 1 if fc1 and fc2 are perpendicular, 0 if they are not

	Parameters

	
	fc1 (FreeCAD.Vector) – Firs vector

	fc2 (FreeCAD.Vector) – Second vector

	Returns

	
	* 1 if fc1 and fc2 are perpendicular

	* 0 if they are not

	
fcfun.fillet_len(box, e_len, radius, name)

	Make a new object with fillet

	Parameters

	
	box (TopoShape) – Original shape we want to fillet

	e_len (float) – Length of the edges that we want to fillet

	radius (float) – Radius of the fillet

	name (str) – Name of the shape we want to create

	Returns

	FreeCAD Object with fillet made

	Return type

	FreeCAD Object

	
fcfun.filletchamfer(fco, e_len, name, fillet=1, radius=1, axis='x', xpos_chk=0, ypos_chk=0, zpos_chk=0, xpos=0, ypos=0, zpos=0)

	Fillet or chamfer edges of a certain length, on a certain axis
and a certain coordinate

	Parameters

	
	fco (FreeCAD Object) – Original FreeCAD object we want to fillet or chamfer

	fillet (int) –
	1 if we are doing a fillet

	0 if it is a chamfer

	e_len (float) – Length of the edges that we want to fillet or chamfer
if e_len == 0, chamfer/fillet any length

	radius (float) – Radius of the fillet or chamfer

	axis (str) – Axis where the fillet will be

	xpos_chk (int) – If the X position will be checked

	ypos_chk (int) – If the Y position will be checked

	zpos_chk (int) – If the Z position will be checked

	xpos (float) – The X position

	ypos (float) – The Y position

	zpos (float) – The Z position

	name (str) – Name of the fco we want to create

Notes

If axis = ‘x’, x_pos_check will not make sense

	Returns

	FreeCAD Object with fillet/chamfer made

	Return type

	FreeCAD Object

	
fcfun.fuseshplist(shp_list)

	Since multifuse methods needs to be done by a shape and a list,
and usually I have a list that I want to fuse, I make this function
to save the inconvenience of doing everytime what I will do here
Fuse multiFuse

	
fcfun.get_bolt_bearing_sep(bolt_d, hasnut, lbearing_r, bsep=0)

	same as get_bolt_end_sep, but when there is a bearing.
If there is a bearing, there will be more space because the nut is at
the bottom or top, and the widest side is on the middle

 lbearing_r
 rad ..+...
 ..+.. : :
 ______ : :__:______:_
| |_ : _| .* :
| | : | .* : this is the bearing section (circunference)
| | : | (:
| _| : |_ : *. :
|______| : |__:____*_:
 : : : :
 : :.bsep :
 : :
 :.bolt_b_sep..:

	Parameters

	
	bolt_d (int) – Diameter of the bolt: 3, 4, … for M3, M4,…

	hasnut (int) –
	1: if there is a nut

	0: if there is not a nut, so just the bolt head (smaller)

	lbearing_r (float) – Radius of the linear bearing

	bsep (float) – Separation from the outside of the nut to the end of bearing
default value 0mm

	Returns

	Minimum separation between the center of the bolt and the bearing

	Return type

	float

	
fcfun.get_bolt_end_sep(bolt_d, hasnut, sep=2.0)

	Calculate Bolt separation

Calculates know how much separation is needed for a bolt
The bolt (din912) head diameter is usually smaller than the nut (din934)
The nut max value is given by its 2*apotheme (S) (wrench size)
so its max diameter is 2A x cos(30)

Example of nut and bolt head sizes:

	
	din912

	din938

	

	
	D

	S(max)

	D(max)

	M3

	5.5

	5.5

	6,35

	M4

	7.0

	7.0

	8,08

	M5

	8.5

	8.0

	9,24

	M6

	10.0

	10.0

	11,55

Therefore, if there is a nut, the nut will be used to calculate the
separation

 _____ : _______
	_ : _
	:
	:
_	:
_____	:
: : :
:..,..:.,.:
: sep rad:
: :
:....,....:
 bolt_sep

	Parameters

	
	bolt_d (int) – Diameter of the bolt: 3, 4, … for M3, M4,…

	hasnut (int) –
	1: if there is a nut

	0: if there is not a nut, so just the bolt head (smaller)

	sep (float) –
	Separation from the outside of the nut to the end, if empty,
	default value 2mm

	Returns

	Minimum separation between the center of the bolt and the end

	Return type

	float

	
fcfun.get_fc_perpend1(fcv)

	gets a ‘random’ perpendicular FreeCAD.Vector

	Parameters

	fcv (FreeCAD.Vector) – Vector from which to get perpendicular vector

	Returns

	Random perpendicular vector

	Return type

	FreeCAD.Vector

	
fcfun.get_fclist_4perp2_fcvec(fcvec)

	Gets a list of 4 FreCAD.Vector perpendicular to one base vector
fcvec can only be:
* (1,0,0)
* (0,1,0)
* (0,0,1)
* (-1,0,0)
* (0,-1,0)
* (0,0,-1)

	For example:
	from (1,0,0) -> (0,1,0), (0,0,1), (0,-1,0), (0,0,-1)

	Parameters

	fcvec (vector) – (1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), (0,0,-1)

	Returns

	List of FreeCAD.Vector

	Return type

	list

	
fcfun.get_fclist_4perp2_vecname(vecname)

	Gets a list of 4 FreCAD.Vector perpendicular to one vecname
different from get_fclist_4perp_vecname
For example:

from 'x' -> (0,1,1), (0,-1,1), (0,-1,-1), (0,1,-1)

	Parameters

	vecname (str) – ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’

	Returns

	List of FreeCAD.Vector

	Return type

	list

	
fcfun.get_fclist_4perp_fcvec(fcvec)

	Gets a list of 4 FreeCAD.Vector perpendicular to one base vector
fcvec can only be:
* (1,0,0)
* (0,1,0)
* (0,0,1)
* (-1,0,0)
* (0,-1,0)
* (0,0,-1)

	For example:
	from (1,0,0) -> (0,1,0), (0,0,1), (0,-1,0), (0,0,-1)

	Parameters

	fcvec (vector) – (1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), (0,0,-1)

	Returns

	List of FreeCAD.Vector

	Return type

	list

	
fcfun.get_fclist_4perp_vecname(vecname)

	Gets a list of 4 FreCAD.Vector perpendicular to one vecname
for example:

from 'x' -> (0,1,0), (0,0,1), (0,-1,0), (0,0,-1)

	Parameters

	vecname (str) – ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’

	Returns

	List of FreeCAD.Vector

	Return type

	list

	
fcfun.get_fcvectup(tup)

	Gets the FreeCAD.Vector of a tuple

	Parameters

	tup (tuple) – Tuple of 3 elements

	Returns

	FreeCAD.Vector of a tuple

	Return type

	FreeCAD.Vector

	
fcfun.get_nameofbasevec(fcvec)

	From a base vector either:
(1,0,0), (0,1,0), (0,0,1), (-1,0,0), (0,-1,0), (0,0,-1)
Gets its name: ‘x’, ‘y’,….

	Returns

	Vector name

	Return type

	str

	
fcfun.get_positive_vecname(vecname)

	It just get ‘x’ when vecname is ‘x’ or ‘-x’, and the same
for the others, because some functions receive only positive
base vector

	Parameters

	vecname (str) – ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’

	Returns

	Vector name

	Return type

	str

	
fcfun.get_rot(v1, v2)

	Calculate the rotation from v1 to v2
the difference with previous verions, such fc_calc_rot, calc_rot, calc_rot
is that it is for any vector direction.
The difference with DraftVecUtils.getRotation is that getRotation doesnt
work for vectors with 180 degrees.

Notes

MAYBE IT IS NOT NECESSARY, just use FreeCAD.Rotation
rotation.Axis, math.degrees(rotation.Angle)

	Parameters

	
	v1 (FreeCAD.Vector) – Vector to calculate the rotation

	v2 (FreeCAD.Vector) – Vector to calculate the rotation

	Returns

	Tuple representing a quaternion rotation between v2 and v1

	Return type

	FreeCAD.Rotation

	
fcfun.get_tangent_2circles(center1_pt, center2_pt, rad1, rad2, axis_n, axis_side=None)

	Returns a list of lists (matrix) with the 2 tangent points for each
of the 2 tangent lines

 (difficult to draw in using ASCII text)

 axis_p
 :
 T2 : axis_side
 . * r1 / ------------
 . . / :
 . . . / :
T1 . . . r2-r1 (r_diff) + r2*sin(beta)
 * . . :
 r1 . alpha beta :
 ---------------------- ---- axis_c (axis going thru centers)
 C1 : C2
 :: : :
 :: :.....:
 :: + :
 :: r2*cos(beta):
 :: :
 ::......................:
 :: +
 :: C1_C2_d (hypotenuse)
 ::
 ::
 r1*cos(beta)

 alpha = atan(r_diff/C1_C2_d)
 beta = 90 - alpha

 tangent points along axis_c and axis_p

 T2_c = C2_c - r2 * cos(beta)
 T2_p = C2_p - r2 * sin(beta)

 T1_c = C1_c - r1 * cos(beta)
 T1_p = C1_p - r1 * sin(beta)

	Parameters

	
	center1_pt (FreeCAD.Vector) – Center of the circle 1

	center2_pt (FreeCAD.Vector) – Center of the circle 2

	rad1 (float) – Radius of the circle 1

	rad2 (float) – Radius of the circle 2

	axis_n (FreeCAD.Vector) – Direction of the normal of the circle

	axis_side (FreeCAD.Vector) – Direction to the side of the tangent line, if not given,
it will return the 2 points of both lines
The 2 tangent lines will be at each side of axis_c. The smaller than
90 degree angle between axis_side and the 2 possible axis_p

	Returns

	
	* If axis_side is given –

	Returns a list of lists (matrix)

	Element [0][0] is the point tangent to circle 1 at side axis_side

	Element [0][1] is the point tangent to circle 2 at side axis_side

	Element [1][0] is the point tangent to circle 1 at opposite side of
direction of axis_side

	Element [1][1] is the point tangent to circle 2 at opposite side of
direction of axis_side

	* If axis_side is not given, the order of the list of the lines is – arbitrary

	* If there is an error it will return 0

Notes

Interesting variables

axis_p (FreeCAD.Vecrtor)

Vector of the circle plane, perpendicular to axis_d. It can have
to possible directions. If paremeter axis_side is defined, it will
have the direction that has less than 90 degress related to axis_side

	
fcfun.get_tangent_circle_pt(ext_pt, center_pt, rad, axis_n, axis_side=None)

	Get the point of the tangent to the circle

 (difficult to draw in using ASCII text)

 external point
 : tangent point 1
 *--- _
 \ / \
 \() circle
 tangent \ _ /
 point 2

The 3 points: center(C), ext_pt(E) and tangent_pt(T) form a
rectangle triangle

 axis_p
 : axis_side
 : /
 : <90 /
 T /
 . *. /
 . 90 . rad
 . .
 . alpha beta .
 ----------------------- ---- axis_c (axis going thru centers)
E : C
 : : :
 :.................: :
 : + :
 : axis_c_ET_d :
 : :
 :.......................:
 +
 EC_d (hypotenuse)

	Parameters

	
	ext_pt (FreeCAD.Vector) – External point

	center_pt (FreeCAD.Vector) – Center of the circle

	rad (float) – Radius of the circle

	axis_n (FreeCAD.Vector) – Direction of the normal of the circle

	axis_side (FreeCAD.Vector) – Direction to the side of the tangent point, if not given, it will return both points
The 2 tangent points will be at each side of axis_c. The smaller than 90 degree angle
between axis_side and the 2 possible axis_p

	Returns

	
	If axis_side is not given – returns a list with the 2 points that each point forms a line tangent
to the circle. The 2 lines are defined by one of each point and the
external point.

	If axis_side is given – Only returns a point (FreeCAD.Vector) with the tangent point defined
by the direction of axis_side

	If there is an error it will return 0

Notes

Interesting Parameters

axis_p (FreeCAD.Vector)

Vector of the circle plane, perpendicular to axis_d. It can have
to possible directions. If paremeter axis_side is defined, it will
have the direction that has less than 90 degress related to axis_side

	
fcfun.get_vecname_perpend1(vecname)

	Gets a perpendicular vecname

	Parameters

	vec (str) – ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’

	Returns

	Perpendicular vector name

	Return type

	str

	
fcfun.get_vecname_perpend2(vecname)

	Gets the other perpendicular vecname (see get_vecname_perpend)

	Parameters

	vec (str) – ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’

	Returns

	Perpendicular vector name

	Return type

	str

	
fcfun.getfcvecofname(axis)

	Returns the FreeCAD.Vecor of the vector name given

	
fcfun.getvecofname(axis)

	Get axis name renunrs the vector

	
fcfun.regpolygon_dir_vecl(n_sides, radius, fc_normal, fc_verx1, pos)

	Similar to regpolygon_vecl but in any place and direction of the space
calculates the vertexes of a regular polygon. Returns a list of
FreeCAD vectors with the vertexes. The first vertex will be repeated
at the end, this is needed to close the wire to make the shape
The polygon will have the center in pos. The normal on fc_normal
The direction of the first vertex on fc_verx_1

	Parameters

	
	n_sides (int) – Number of sides of the polygon

	radius (float) – Circumradius of the polygon

	fc_normal (FreeCAD.Vector) – Direction of the normal

	fc_verx1 (FreeCAD.Vector) – Direction of the first vertex

	pos (FreeCAD.Vector) – Position of the center

	Returns

	List of FreeCAD.Vector of the vertexes

	Return type

	List

	
fcfun.regpolygon_vecl(n_sides, radius, x_angle=0)

	Calculates the vertexes of a regular polygon. Returns a list of
FreeCAD vectors with the vertexes. The first vertex will be repeated
at the end, this is needed to close the wire to make the shape
The polygon will be on axis XY (z=0).

	Parameters

	
	n_sides (int) – Number of sides of the polygon

	radius (float) – Circumradius of the polygon

	x_angle (float) – If zero, the first vertex will be on axis x (y=0)
if x_angle != 0, it will rotated some angle

	Returns

	List of FreeCAD.Vector of the vertexes

	Return type

	List

	
fcfun.rotateview(axisX=1.0, axisY=0.0, axisZ=0.0, angle=45.0)

	Rotate the camara

	
fcfun.shpRndRectWire(x=1, y=1, r=0.5, zpos=0)

	Creates a wire (shape), that is a rectangle with rounded edges.
if r== 0, it will be a rectangle
The wire will be centered

 Y
 |_ X

 ______ ___ y
/ \ r
| |
| | z=0
| |
______/ ___

|_______| x

	Parameters

	
	x (float) – Dimension of the base, on the X axis

	y (float) – Dimension of the height, on the Y axis

	r (float) – Radius of the rouned edge.

	zpos (float) – Position on the Z axis

	Returns

	FreeCAD Wire of a rounded edges rectangle

	Return type

	Shape Wire

	
fcfun.shp_2stadium_dir(length, r_s, r_l, h_tot, h_rl, fc_axis_h=FreeCAD.Vector, fc_axis_l=FreeCAD.Vector, ref_l=1, rl_h0=1, xtr_h=0, xtr_nh=0, pos=FreeCAD.Vector)

	Makes to concentric stadiums, useful for making rails for bolts
the length is the same for both. Changes the radius and the height
The smaller radius will have the largest length

rl_h0 = 1: the large stadium is at h=0

 fc_axis_h
 ________:________......................
 | : : | :
 | : : | :
 ___| : : |___ + h_tot
| : : | : h_rl :
|_______:____*____:_______|........:.......:> fc_axis_l
: : : :
:...:.+.:.........:
: r_s: lenght
: :
: :
:.r_l...:

rl_h0 = 0 : the large stadium is at the end of h

 fc_axis_h
 ____________:____________..............
| : : | : h_rl :
|___ : : ___|....: :
 | : : | :+ h_tot
: | : : | :
: |___:____*____:___|................:> fc_axis_l
: : : :
:...:.+.:.........:
: r_s: length
: :
: :
:.r_l...:

on the axis_h, the h_rl stadium can be at the reference, or at the
end of the reference (rl_h0 =0):

ref_l points:

 fc_axis_s
 :
 :_________
 / \
 (2 1) -------> fc_axis_l
 __________/

	Parameters

	
	length (float) – Length of the parallels, from one semicircle center to the other

	r_s (float) – Smaller radius of the semicircles

	r_l (float) – Larger radius of the semicircles

	h_tot (float) – Total height

	h_rl (float) – Height of the larger radius stadium

	fc_axis_h (FreeCAD.Vector) – Vector on the direction of the height

	fc_axis_l (FreeCAD.Vector) – Vector on the direction of the parallels,

	ref_l (int) – Reference (zero) of the fc_axis_l

	1: reference on the center (makes axis_s symmetrical)

	2: reference at one of the semicircle centers (point 2)
the other circle center will be on the direction of fc_axis_l

	rl_h0 (int) –
	1: if the larger radius stadium is at the beginning of the axis_h

	0: at the end of axis_h

	xtr_h (float) – If >0 it will be that extra height on the direction of fc_axis_h

	xtr_nh (float) – If >0 it will be that extra height on the opositve direction of
fc_axis_h

	xtr_nh –

	pos (FreeCAD.Vector) – Position of the reference

	Returns

	FreeCAD Shape of a two stadiums

	Return type

	Shape

	
fcfun.shp_aluwire_dir(width, thick, slot, insquare, fc_axis_x=FreeCAD.Vector, fc_axis_y=FreeCAD.Vector, ref_x=1, ref_y=1, pos=FreeCAD.Vector)

	Creates a wire (shape), that is an approximation of a generic alum
profile extrusion. Creates it in any position an any direction

 Y
 |_ X
 :----- width ----:
 : slot :
 : :--: :
 :______: :______:
 | __| |__ |
 | |\ \ / /| |
 |_| \ ____/ / |_|
 | | insquare
 | () |indiam :
 _ | ____ |:
 | | / / \ \ | |
 | |/ /_ _\ \| |
 |______| |______|thick

 Y values:
 : 3 _____ 4
 : |_1 7| 1,2: width/2 - thick
 : 2 / /|_|7: width/2- (thick+thick*cos45)
 :___/ / 6 5 5,6: slot/2.
 : 0 |8 :8:insquare/2-thick*cos45 0:insquare/2 :
 :.....|......:..........................:.............:

ref_x= 1 ; ref_y = 1
 fc_axis_w
 :
 :
 _ : _
 |_|_:_|_|
|.:.|........ fc_axis_p
 |:_|_
 |_| : |_|
 :
 :
 :

ref_x= 2 ; ref_y = 1 (the zero of axis_y is at the center)
 (the zero of axis_x is at one side)

 fc_axis_y
 :
 :
 :
 :_ _
 |_|___|_|
:.|...|........ fc_axis_x
 :_|___|_
 |_| |_|
 :
 :
 :

	Parameters

	
	width (float) – Total width of the profile, it is a square

	thick (float) – Thickness of the side

	slot (float) – Width of the rail

	insquare (float) – Width of the inner square

	indiam (float) – Diameter of the inner hole

	fc_axis_x (int) – Is a generic X axis, can be any

	1: reference (zero) at the center

	2: reference (zero) at the side, the other end side will be on the
direction of fc_axis_x

	fc_axis_y (int) – Is a generic Y axis, can be any perpendicular to fc_axis_y

	1: reference (zero) at the center

	2: reference (zero) at the side, the other end side will be on the
direction of fc_axis_y

	ref_x (float) – Reference (zero) on the fc_axis_x

	ref_y (float) – Reference (zero) on the fc_axis_1

	pos (FreeCAD.Vector) – Position of the center

	Returns

	FreeCAD Shape Wire of a aluminium profile

	Return type

	Shape Wire

	
fcfun.shp_belt_dir(center_sep, rad1, rad2, height, fc_axis_h=FreeCAD.Vector, fc_axis_l=FreeCAD.Vector, ref_l=1, ref_h=1, xtr_h=0, xtr_nh=0, pos=FreeCAD.Vector)

	Makes a shape of 2 tangent circles (like a belt joining 2 circles).
check shp_belt_wire_dir

	Parameters

	
	center_sep (float) – Separation of the circle centers

	rad1 (float) – Radius of the first circle, on the opposite direction of fc_axis_l

	rad2 (float) – Radius of the second circle, on the direction of fc_axis_l

	height (float) – Height of the shape

	fc_axis_l (FreeCAD.Vector) – Vector on the direction circle centers, pointing to rad2

	fc_axis_h (FreeCAD.Vector) – Vector on the hieght direction

	ref_l (int) – Reference (zero) of the fc_axis_l

	1: reference on the center

	2: reference at rad1 semicircle centers (point 2)
the other circle center will be on the direction of fc_axis_l

	3: reference at the end of rad1 circle
the other end will be on the direction of fc_axis_l

	ref_h (int) –
	1: reference is at the center of the height

	2: reference is at the bottom

	xtr_h (float) – If >0 it will be that extra height on the direction of fc_axis_h

	xtr_nh (float) – If >0 it will be that extra height on the opositve direction of
fc_axis_h

	pos (FreeCAD.Vector) – Position of the reference

	Returns

	FreeCAD Shape of a belt

	Return type

	Shape

	
fcfun.shp_belt_wire_dir(center_sep, rad1, rad2, fc_axis_l=FreeCAD.Vector, fc_axis_s=FreeCAD.Vector, ref_l=1, ref_s=1, pos=FreeCAD.Vector)

	Makes a shape of a wire with 2 circles and exterior tangent lines
check here [https://en.wikipedia.org/wiki/Tangent_lines_to_circles]
It is not easy to draw it well
rad1 and rad2 can be exchanged, rad1 doesnt have to be larger:

 fc_axis_s
 : (\ tangent |
rad1 : (\ .. rad2 |--> fc_axis_l, on the direction of rad2
 .--(+ +)--
 (/:
 (/ :
 : :
 :...:
 + center_sep

 fc_axis_s
 : (\ tangent |
 rad1 : (\ .. rad2 |
 --(+ +)-- |--> fc_axis_l, on the direction of rad2
 (/: centered on this axis
 (/ :
 : :
 :...:
 ref_l: 3 2 1

	Parameters

	
	center_sep (float) – Separation of the circle centers

	rad1 (float) – Radius of the firs circle, on the opposite direction of fc_axis_l

	fc_axis_l (FreeCAD.Vector) – Vector on the direction circle centers, pointing to rad2

	fc_axis_s (FreeCAD.Vector) – Vector on the direction perpendicular to fc_axis_l, on the plane
of the wire

	ref_l (int) – Reference (zero) of the fc_axis_l

	1: reference on the center

	2: reference at one of the semicircle centers (point 2)
the other circle center will be on the direction of fc_axis_l

	3: reference at the end of rad1 circle
the other end will be on the direction of fc_axis_l

	pos (FreeCAD.Vector) – Position of the reference

	Returns

	FreeCAD Wire of a belt

	Return type

	Shape Wire

	
fcfun.shp_bolt(r_shank, l_bolt, r_head, l_head, hex_head=0, xtr_head=1, xtr_shank=1, support=1, axis='z', hex_ref='x', hex_rot_angle=0, pos=FreeCAD.Vector)

	Similar to addBolt, but creates a shape instead of a FreeCAD Object
Creates a shape of the bolt shank and head or the nut
Tolerances have to be included if you want it for making a hole

It is referenced at the end of the head

	Parameters

	
	r_shank (float) – Radius of the shank (tolerance included)

	l_bolt (float) – Total length of the bolt: head & shank

	r_head (float) – Radius of the head (tolerance included)

	l_head (float) – Length of the head

	hex_head (int) – Inidicates if the head is hexagonal or rounded

	1: hexagonal

	0: rounded

	h_layer3d (float) – Height of the layer for printing, if 0, means that the
support is not needed

	xtr_head (int) – 1 if you want 1 mm on the head to avoid cutting on the same
plane pieces after making cuts (boolean difference)

	xtr_shank (int) – 1 if you want 1 mm at the opposite side of the head to
avoid cutting on the same plane pieces after making cuts
(boolean difference)

	support (int) – 1 if you want to include a triangle between the shank and the
head to support the shank and not building the head on the
air using kcomp.LAYER3D_H

	axis (str) – ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’: Defines the orientation. For example:

axis = '-z': Z
 :
 ____:____
 xtr_head=1 | :....|...... X
 | |
 |__ __|
 | |
 | |
 | |
 |___|

axis = 'z': Z
 :
 :
 :
 | : |
 | : |
 | : |
 __| : |__
 | : |
 xtr_head=1 | :....|...... X
 |____:____|

	hex_ref (str) – In case of a hexagonal head, this will indicate the
axis that the first vertex of the nut will point
hex_ref has to be perpendicular to axis, if not, it will be
changed

	hex_rot_angle (float) – Angle in degrees. In case of a hexagonal head, it will
indicate the angle of rotation of the hexagon referenced to hex_ref.

	pos (FreeCAD.Vector) – Position of the center of the head of the bolt

	Returns

	FreeCAD Shape of a bolt

	Return type

	Shape

	
fcfun.shp_bolt_dir(r_shank, l_bolt, r_head, l_head, hex_head=0, xtr_head=1, xtr_shank=1, support=1, fc_normal=FreeCAD.Vector, fc_verx1=FreeCAD.Vector, pos_n=0, pos=FreeCAD.Vector)

	Similar to shp_bolt, but it can be done in any direction
Creates a shape, not a of a FreeCAD Object
Creates a shape of the bolt shank and head or the nut
Tolerances have to be included if you want it for making a hole

It is referenced at the end of the head

	Parameters

	
	r_shank (float) – Radius of the shank (tolerance included)

	l_bolt (float) – Total length of the bolt: head & shank

	r_head (float) – Radius of the head (tolerance included)

	l_head (float) – Length of the head

	hex_head (int) – Inidicates if the head is hexagonal or rounded

	1: hexagonal

	0: rounded

	h_layer3d (float) – Height of the layer for printing, if 0, means that the
support is not needed

	xtr_head (int) – 1 if you want 1 mm on the head to avoid cutting on the same
plane pieces after making cuts (boolean difference)

	xtr_shank (int) – 1 if you want 1 mm at the opposite side of the head to
avoid cutting on the same plane pieces after making cuts
(boolean difference)

	support (int) – 1 if you want to include a triangle between the shank and the
head to support the shank and not building the head on the
air using kcomp.LAYER3D_H

	fc_normal (FreeCAD.Vector) – Defines the orientation. For example:

fc_normal = (0,0,-1): Z
 :
 ____:____
..xtr_head=1 | :....|...... X pos_n = 0
: l_head+: | |
: :......|__ __| pos_n = 1
:+ l_bolt | |
: | |
:.......................| |.............pos_n = 2
 |___|....xtr_shank
 :
 :
 fc_normal

fc_normal = (0,0,1): Z
 :
 :
 :
 | : |
 | : |
 | : |
 __| : |__
 | : |
 xtr_head=1 | :....|...... X
 |____:____|

	fc_verx1 (FreeCAD.Vector) – In case of a hexagonal head, this will indicate the
axis that the first vertex of the nut will point
it has to be perpendicular to fc_normal,

	pos_n (int) – Location of pos along the normal, at the cylinder center

	0: at the top of the head (excluding xtr_head)

	1: at the union of the head and the shank

	2: at the end of the shank (excluding xtr_shank)

	pos (FreeCAD.Vector) – Position of the center of the head of the bolt

	Returns

	FreeCAD Shape of a bolt

	Return type

	Shape

	
fcfun.shp_boltnut_dir_hole(r_shank, l_bolt, r_head, l_head, r_nut, l_nut, hex_head=0, xtr_head=1, xtr_nut=1, supp_head=1, supp_nut=1, headstart=1, fc_normal=FreeCAD.Vector, fc_verx1=FreeCAD.Vector, pos=FreeCAD.Vector)

	Similar to addBoltNut_hole, but in any direction and creates shapes,
not FreeCAD Objects
Creates the hole for the bolt shank, the head and the nut.
The bolt head will be at the botton, and the nut will be on top
Tolerances have to be already included in the argments values

	Parameters

	
	r_shank (float) – Radius of the shank (tolerance included)

	l_bolt (float) – Total length of the bolt: head & shank

	r_head (float) – Radius of the head (tolerance included)

	l_head (float) – Length of the head

	r_nut (float) – Radius of the nut (tolerance included)

	l_nut (float) – Length of the nut. It doesn’t have to be the length of the nut
but how long you want the nut to be inserted

	hex_head (int) – Inidicates if the head is hexagonal or rounded

	1: hexagonal

	0: rounded

	xtr_head (int) – 1 if you want an extra size on the side of the head
to avoid cutting on the same plane pieces after making
differences

	xtr_nut (int) – 1 if you want an extra size on the side of the nut
to avoid cutting on the same plane pieces after making
differences

	supp_head (int) – 1 if you want to include a triangle between the shank and the
head to support the shank and not building the head on the air
using kcomp.LAYER3D_H

	supp_nut (int) – 1 if you want to include a triangle between the shank and the
nut to support the shank and not building the nut on the air
using kcomp.LAYER3D_H

	headstart (int) – If on pos you have the head, or if you have it on the
other end

	fc_normal (FreeCAD.Vector) – Direction of the bolt

	fc_verx1 (FreeCAD.Vector) – Direction of the first vertex of the hexagonal nut.
Perpendicular to fc_normal. If not perpendicular or zero,
means that it doesn’t matter which direction and the function
will obtain one perpendicular direction

	pos (FreeCAD.Vector) – Position of the head (if headstart) or of the nut

	Returns

	FreeCAD Object of a Nut Hole

	Return type

	FreeCAD Object

	
fcfun.shp_box_dir(box_w, box_d, box_h, fc_axis_w=FreeCAD.Vector, fc_axis_h=FreeCAD.Vector, fc_axis_d=FreeCAD.Vector, cw=1, cd=1, ch=1, pos=FreeCAD.Vector)

	Makes a shape of a box given its 3 dimensions: width, depth and height
and the direction of the height and depth dimensions.
The position of the box is given and also if the position is given
by a corner or its center

 |\ \
 | \ \
 | _______\
 \ | |
 \|_______|

Example of not centered on origin

 Z=fc_axis_h . Y = fc_axis_d
 : .
 : __________
 : /: . / |
 : / : . / | h
 :/________/ |
 | :.....|...|3
 | / 4 | /
 | / | / d
 |/________|/.....................X
 1 2
 w

Example of centered on origin

 Z=fc_axis_h Y = fc_axis_d
 : .
 __________ .
 /: : / |.
 / : : / .| h
 /__:_____/. |
 | :.....|...|3
 | / 4 :..|../........................X
 | / | / d
 |/________|/
 1 2
 w

	Parameters

	
	box_w (float) – Width of the box

	box_d (float) – Depth of the box

	box_h (float) – Height of the box

	fc_axis_w (FreeCAD.Vector) – Direction of the width

	fc_axis_d (FreeCAD.Vector) – Direction of the depth

	fc_axis_h (FreeCAD.Vector) – Direction of the height

	cw (int) –
	1: the width dimension is centered

	0: it is not centered

	cd (int) –
	1: the depth dimension is centered

	0: it is not centered

	ch (int) –
	1: the height dimension is centered

	0: it is not centered

	pos (FreeCAD.Vector) – Position of the box, it can be the center one corner,
or a point centered in the dimensions given by cw, cd, ch

	Returns

	Shape of a box

	Return type

	TopoShape

	
fcfun.shp_box_dir_xtr(box_w, box_d, box_h, fc_axis_h=FreeCAD.Vector, fc_axis_d=FreeCAD.Vector, fc_axis_w=FreeCAD.Vector, cw=1, cd=1, ch=1, xtr_h=0, xtr_nh=0, xtr_d=0, xtr_nd=0, xtr_w=0, xtr_nw=0, pos=FreeCAD.Vector)

	Makes a shape of a box given its 3 dimensions: width, depth and height
and the direction of the height and depth dimensions.
The position of the box is given and also if the position is given
by a corner or its center. Extra mm to make cuts

 |\ \
 | \ \
 | _______\
 \ | |
 \|_______|

Example of not centered on origin

 Z=fc_axis_h . Y = fc_axis_d
 : .
 : __________
 : /: . / |
 : / : . / | h
 :/________/ |
 | :.....|...|3
 | / 4 | /
 | / | / d
 |/________|/.....................X
 1 2
 w

Example of centered on origin

 Z=fc_axis_h Y = fc_axis_d
 : .
 __________ .
 /: : / |.
 / : : / .| h
 /__:_____/. |
 | :.....|...|3
 | / 4 :..|../........................X
 | / | / d
 |/________|/
 1 2
 w

	Parameters

	
	box_w (float) – Width of the box

	box_d (float) – Depth of the box

	box_h (float) – Heiht of the box

	fc_axis_h (FreeCAD.Vector) – Direction of the height

	fc_axis_d (FreeCAD.Vector) – Direction of the depth

	fc_axis_w (FreeCAD.Vector) – Direction of the width

	cw (int) –
	1 the width dimension is centered

	0 it is not centered

	cd (int) –
	1 the depth dimension is centered

	0 it is not centered

	ch (int) –
	1 the height dimension is centered

	0 it is not centered

	xtr_w (float) – If an extra mm will be added, the number will determine the size
useful to make cuts

	xtr_nw (float) – If an extra mm will be added, the number will determine the size
useful to make cuts

	xtr_d (float) – If an extra mm will be added, the number will determine the size
useful to make cuts

	xtr_nd (float) – If an extra mm will be added, the number will determine the size
useful to make cuts

	xtr_h (float) – If an extra mm will be added, the number will determine the size
useful to make cuts

	xtr_nh (float) – If an extra mm will be added, the number will determine the size
useful to make cuts

	pos (FreeCAD.Vector) – Position of the box, it can be the center one corner, or a point centered
in the dimensions given by cw, cd, ch

	Returns

	FreeCAD.Object with a shape of a box

	Return type

	TopoShape

Notes

fc_axis_w not necessary, unless cw=0, then it indicates the
direction of w, it has to be perpendicular to the previous

	
fcfun.shp_box_rot(box_w, box_d, box_h, axis_w='x', axis_nh='-z', cw=1, cd=1, ch=1)

	Makes a box with width, depth, heigth and then rotation will be referred to
axis_w = (1,0,0) and axis_nh = (0,0,-1). Can be centered on any of the dimensions.

	Parameters

	
	box_w (float) – The width is X

	box_d (float) – The depth is Y

	box_h (float) – The height is Z

	cw (int) – If 1 is centered

	cd (int) – If 1 is centered

	ch (int) – If 1 is centered

	axis_w (str) – Can be: x, -x, y, -y, z, -z

	axis_nh (str) – Can be: x, -x, y, -y, z, -z

Notes

Check if it makes sense to have this small function

	
fcfun.shp_boxcen(x, y, z, cx=False, cy=False, cz=False, pos=FreeCAD.Vector)

	Adds a shape of box, referenced on the specified axis, with its
Placement and Rotation at zero. So it can be referenced absolutely from
its given position

	Parameters

	
	x (float) – Length

	y (float) – Width

	z (float) – Height

	name (str) – Object Name

	cx (boolean) – Center in the length or not

	cy (boolean) – Center in the or width not

	cz (boolean) – Center in the height or not

	pos (FreeCAD.Vector) – Placement

	Returns

	Shape of a box

	Return type

	TopoShape

	
fcfun.shp_boxcenchmf(x, y, z, chmfrad, fx=False, fy=False, fz=True, cx=False, cy=False, cz=False, pos=FreeCAD.Vector)

	Same as shp_boxcen but with a chamfered dimension

	Parameters

	
	x (float) – Length

	y (float) – Width

	z (float) – Height

	fillrad (float) – Fillet size

	fx (boolean) – Fillet in x dimension

	fy (boolean) – Fillet in y dimension

	fz (boolean) – Fillet in z dimension

	cx (boolean) – Center in the length or not

	cy (boolean) – Center in the or width not

	cz (boolean) – Center in the height or not

	pos (FreeCAD.Vector) – Placement

	Returns

	Shape of a box

	Return type

	TopoShape

	
fcfun.shp_boxcenfill(x, y, z, fillrad, fx=False, fy=False, fz=True, cx=False, cy=False, cz=False, pos=FreeCAD.Vector)

	Same as shp_boxcen but with a filleted dimension

	Parameters

	
	x (float) – Length

	y (float) – Width

	z (float) – Height

	fillrad (float) – Fillet size

	fx (boolean) – Fillet in x dimension

	fy (boolean) – Fillet in y dimension

	fz (boolean) – Fillet in z dimension

	cx (boolean) – Center in the length or not

	cy (boolean) – Center in the or width not

	cz (boolean) – Center in the height or not

	pos (FreeCAD.Vector) – Placement

	Returns

	Shape of a box

	Return type

	TopoShape

	
fcfun.shp_boxcenxtr(x, y, z, cx=False, cy=False, cz=False, xtr_nx=0, xtr_x=0, xtr_ny=0, xtr_y=0, xtr_nz=0, xtr_z=0, pos=FreeCAD.Vector)

	The same as shp_boxcen, but when it is used to cut. So sometimes it is
useful to leave an extra 1mm on some sides to avoid making cuts sharing
faces. The extra part is added but not influences on the reference

 | Y cy=1, xtr_ny=1
 |
 1 |

_	_______

	Parameters

	
	x (float) – Length

	y (float) – Width

	z (float) – Height

	cx (int) – Center in the length or not

	cy (int) – Center in the or width not

	cz (int) – Center in the height or not

	xtr_x (float) – Extra mm to add in positive axis of length

	xtr_nx (float) – Extra mm to add in negative axis of length

	xtr_y (float) – Extra mm to add in positive axis of width

	xtr_ny (float) – Extra mm to add in negative axis of width

	xtr_z (float) – Extra mm to add in positive axis of height

	xtr_nz (float) – Extra mm to add in negative axis of height

	pos (FreeCAD.Vector) – Placement

	Returns

	Shape of a box

	Return type

	TopoShape

	
fcfun.shp_boxdir_fillchmfplane(box_w, box_d, box_h, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, axis_h=FreeCAD.Vector, cw=1, cd=1, ch=1, xtr_d=0, xtr_nd=0, xtr_w=0, xtr_nw=0, xtr_h=0, xtr_nh=0, fillet=1, radius=1.0, plane_fill=FreeCAD.Vector, both_planes=1, edge_dir=FreeCAD.Vector, pos=FreeCAD.Vector)

	Creates a box shape (cuboid) along 3 axis.

The shape will be filleted or chamfered on the edges of the plane defined
by the plane_fill vector. If both_planes == 1, both faces will be
filleted/chamfered
if both_planes == 0, only the face that plane_fill is normal and goes
outwards
if edge_dir has an edge direction, only those edges in that direction will
be filleted/chamfered

Example of not centered on origin: cd=0, cw=0, ch=0

 axis_h . axis_d
 : .
 : __________....
 : /: . / | :
 : / : . / | :h
 :/________/ | :
 | :.....|...|..:..
 | / | / .
 | / | / . d
 |/________|/.................> axis_w
 : :
 :....w....:

Example of centered on origin: cd=1, cw=1, ch=1

 axis_h axis_d
 : .
 __________ .
 /: : / |.
 / : : / .| h
 /__:_____/. |
 | :.....|...|
 | / :..|../..............> axis_w
 | / | /
 |/________|/

 w

 Example of parameter both_planes and edge_dir

 if both_planes == 1:
 if edge_dir == V0:
 edges_to_chamfer = [1,2,3,4,5,6,7,8]
 elif edge_dir == axis_w:
 edges_to_chamfer = [2,4,6,8]
 elif edge_dir == axis_d:
 edges_to_chamfer = [1,3,5,7]
 elif both_planes == 0:
 if edge_dir == V0:
 edges_to_chamfer = [1,2,3,4]
 elif edge_dir == axis_w:
 edges_to_chamfer = [2,4]
 elif edge_dir == axis_d:
 edges_to_chamfer = [1,3]

 axis_h=plane_fill
 :
 : ____2_____
 : /: / |
 : 1 : 3 |
 :/_____4__/ |
 | :...6.|...|
 | / | /
 | 5 | 7
 |/___8____|/.................> axis_w

 Another example of parameter both_planes

 if both_planes == 1:
 edges_to_chamfer = [1,2,3,4,5,6,7,8]
 elif both_planes == 0:
 edges_to_chamfer = [5,6,7,8]

 axis_h
 :
 : ____2_____
 : /: / |
 : 1 : 3 |
 :/_____4__/ |
 | :...6.|...|
 | / | /
 | 5 | 7
 |/___8____|/.................> axis_w
 :
 :
 :
 V
 plane_fill = axis_h.negative()

	Parameters

	
	box_d (positive float) – Depth of the box

	box_w (positive float) – Width of the box

	box_h (positive float) – Height of the box

	axis_d (FreeCAD.Vector) – Depth vector of the coordinate system

	axis_w (FreeCAD.Vector) – Width vector of the coordinate system, can be V0 if centered
and will be perpendicular to axis_d and axis_w

	axis_h (FreeCAD.Vector) – Height vector of the coordinate system

	cw (int) – 1: centered along axis_w

	cd (int) – 1: centered along axis_d

	ch (int) – 1: centered along axis_h

	xtr_d (float, >= 0) – Extra depth, if there is an extra depth along axis_d

	xtr_nd (float, >= 0) – Extra depth, if there is an extra depth along axis_d.negative

	xtr_w (float, >= 0) – Extra width, if there is an extra width along axis_w

	xtr_nw (float, >= 0) – Extra width, if there is an extra width along axis_w.negative

	xtr_h (float, >= 0) – Extra height, if there is an extra height along axis_h

	xtr_nh (float, >= 0) – Extra height, if there is an extra height along axis_h.negative

	fillet (int) –
	1: to fillet the edges

	0: to chamfer the edges

	radius (float >= 0) – radius of the fillet/chamfer

	plane_fill (FreeCAD.Vector) – Vector perpendicular to the face that is going to be filleted/chamfered

	both_planes (int) –
	0: fillet/chamfer only the edges on the face perpendicular to
plane_fill and on the face that plane_fill goes outwards. See drawing

	1: fillet/chamfer the edges on both faces perpendicular to
plane_fill

	edge_dir (FreeCAD.Vector) –
	V0: fillet/chamfer all the edges of that/those faces

	Axis: fillet/chamfer only the edges of that/those faces that are
paralell to this axis

	pos (FreeCAD.Vector) – Position of the box

	Returns

	Shape of the filleted/chamfered box

	Return type

	TopoShape

	
fcfun.shp_cableturn(d, w, thick_d, corner_r, conn_d, conn_sep, xtr_conn_d=0, closed=0, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, pos_d=0, pos_w=0, pos=FreeCAD.Vector)

	Creates a shape of an electrical cable turn, in any direction
But it is a shape in FreeCAD
See function wire_cableturn

 axis_d
 :
 :
:w
: : : pos_d
 ____________ 3
/ \ :..corner_r
| | :
| | :
| | + d 2
| | :
| | :
| | :
 ___ o ____/: 1
 \ / :
 | | + conn_d
 | | :
 | |............:...........axis_w 0
 : :
 conn_sep

1 0 pos_w

pos_o (orig) is at pos_d=0, pos_w=0, marked with o

	Parameters

	
	d (float) – Depth/length of the turn

	w (float) – Width of the turn

	thick_d (float) – Diameter of the wire

	corner_r (float) – Radius of the corners

	conn_d (float) – Depth/length of the connector part

	0: there is no connecting wire

	xtr_conn_d (float) – If conn_d > 0, there can be and extra length of connector to make
unions, it will not be counted as pos_d = 0
It will not work well if it is closed

	conn_sep (float) – Separation of the connectors

	closed (boolean) –
	0 : the ends are not closed

	1 : the ends are closed

	axis_d (FreeCAD.Vector) – Coordinate System Vector along the depth

	axis_w (FreeCAD.Vector) – Coordinate System Vector along the width

	pos_d (int) – Location of pos along the axis_d (0,1,2,3), see drawing

	0: reference at the beginning of the connector

	1: reference at the beginning of the turn, at the side of the connector

	2: reference at the middle of the turn

	3: reference at the end of the turn

	pos_w (int) – Location of pos along the axis_w (0,1), see drawing

	0: reference at the center of simmetry

	1: reference at the end of the turn

	pos (FreeCAD.Vector) – Position of the reference

	Returns

	FreeCAD Shape of a electrical wire

	Return type

	Shape

	
fcfun.shp_cir_fillchmf(shp, circen_pos=FreeCAD.Vector, fillet=1, radius=1)

	Fillet or chamfer edges that is a circle, the shape has to be a
cylinder

	Parameters

	
	shp (Shape) – Original cylinder shape we want to fillet or chamfer

	circen_pos (FreeCAD.Vector) – Center of the circle

	fillet (int) –
	1 if we are doing a fillet

	0 if it is a chamfer

	radius (float) – Radius of the fillet or chamfer

	Returns

	FreeCAD Shape with fillet/chamfer made

	Return type

	Shape

	
fcfun.shp_cyl(r, h, normal=FreeCAD.Vector, pos=FreeCAD.Vector)

	Same as addCylPos, but just creates the shape

	Parameters

	
	r (float) – Radius,

	h (float) – Height

	normal (FreeCAD.Vectot) – FreeCAD.Vector pointing to the normal (if its module is not one,
the height will be larger than h

	pos (FreeCAD.Vector) – Position of the cylinder

	Returns

	FreeCAD Shape of a cylinder

	Return type

	Shape

	
fcfun.shp_cyl_gen(r, h, axis_h=FreeCAD.Vector, axis_ra=None, axis_rb=None, pos_h=0, pos_ra=0, pos_rb=0, xtr_top=0, xtr_bot=0, xtr_r=0, pos=FreeCAD.Vector)

	This is a generalization of shp_cylcenxtr.
Makes a cylinder in any position and direction, with optional extra
heights and radius, and various locations in the cylinder

pos_h = 1, pos_ra = 0, pos_rb = 0
pos at 1:
 axis_rb
 :
 :
 . .
 . .
 (o) ---- axis_ra This o will be pos_o (origin)
 . .
 . .

 axis_h
 :
 :

 :____:____:....: xtr_top
 | |
 | |
 | |
 | |
 | |
 | |
 |____1____|...............> axis_ra
 :....o....:....: xtr_bot This o will be pos_o

pos_h = 0, pos_ra = 1, pos_rb = 0
pos at x:

 axis_rb
 :
 :
 : . .
 : . .
 x) ----> axis_ra
 . .
 . .

 axis_h
 :
 :

 :____:____:....: xtr_top
 | |
 | |
 | |
 x |....>axis_ra
 | |
 | |
 |_________|.....
 :....o....:....: xtr_bot This o will be pos_o

pos_h = 0, pos_ra = 1, pos_rb = 1
pos at x:

 axis_rb
 :
 :
 : . .
 : . .
 ()
 . .
 x > axis_ra

 axis_h
 :
 :

 :____:____:....: xtr_top
x>axis_ra

 ::....o....:....: xtr_bot
 :;
 xtr_r

	Parameters

	
	r (float) – Radius of the cylinder

	h (float) – Height of the cylinder

	axis_h (FreeCAD.Vector) – Vector along the cylinder height

	axis_ra (FreeCAD.Vector) – Vector along the cylinder radius, a direction perpendicular to axis_h
only make sense if pos_ra = 1.
It can be None.

	axis_rb (FreeCAD.Vector) – Vector along the cylinder radius,
a direction perpendicular to axis_h and axis_rb
only make sense if pos_rb = 1
It can be None

	pos_h (int) – Location of pos along axis_h (0, 1)

	0: the cylinder pos is centered along its height

	1: the cylinder pos is at its base (not considering xtr_h)

	pos_ra (int) – Location of pos along axis_ra (0, 1)

	0: pos is at the circunference center

	1: pos is at the circunsference, on axis_ra, at r from the circle center
(not at r + xtr_r)

	pos_rb (int) – Location of pos along axis_rb (0, 1)

	0: pos is at the circunference center

	1: pos is at the circunsference, on axis_rb, at r from the circle center
(not at r + xtr_r)

	xtr_top (float) – Extra height on top, it is not taken under consideration when
calculating the cylinder center along the height

	xtr_bot (float) – Extra height at the bottom, it is not taken under consideration when
calculating the cylinder center along the height or the position of
the base

	xtr_r (float) – Extra length of the radius, it is not taken under consideration when
calculating pos_ra or pos_rb

	pos (FreeCAD.Vector) – Position of the cylinder, taking into account where the center is

	Returns

	FreeCAD Shape of a cylinder

	Return type

	Shape

	
fcfun.shp_cylcenxtr(r, h, normal=FreeCAD.Vector, ch=1, xtr_top=0, xtr_bot=0, pos=FreeCAD.Vector)

	Add cylinder, can be centered on the position, and also can have an extra
mm on top and bottom to make cuts

	Parameters

	
	r (float) – Radius

	h (float) – Height

	normal (FreeCAD.Vector) – FreeCAD.Vector pointing to the normal

	ch (int) – Centered on the middle, of the height

	xtr_top (float) – Extra on top (but does not influence the centering)

	xtr_bot (float) – Extra on bottom (but does not influence the centering)

	pos (FreeCAD.Vector) – Position of the cylinder

	Returns

	FreeCAD Shape of a cylinder

	Return type

	Shape

	
fcfun.shp_cylfilletchamfer(shp, fillet=1, radius=1)

	Fillet or chamfer all edges of a cylinder

	Parameters

	
	shp (Shape) – Original cylinder shape we want to fillet or chamfer

	fillet (int) –
	1 if we are doing a fillet

	0 if it is a chamfer

	radius (float) – Radius of the fillet or chamfer

	Returns

	FreeCAD Shape with fillet/chamfer made

	Return type

	Shape

	
fcfun.shp_cylhole(r_ext, r_int, h, axis='z', h_disp=0.0)

	Same as addCylHole, but just a shape

Add cylinder, with inner hole:

	Parameters

	
	r_ext (float) – External radius,

	r_int (float) – Internal radius,

	h (float) – Height

	axis (str) – ‘x’, ‘y’ or ‘z’

	’x’ will along the x axis

	’y’ will along the y axis

	’z’ will be vertical

	h_disp (int) – Displacement on the height.

	if 0, the base of the cylinder will be on the plane

	if -h/2: the plane will be cutting h/2

	Returns

	FreeCAD Shape of a cylinder with hole

	Return type

	Shape

	
fcfun.shp_cylhole_arc(r_out, r_in, h, axis_h=FreeCAD.Vector, axis_ra=None, axis_rb=None, end_angle=360, pos_h=0, pos_ra=0, pos_rb=0, xtr_top=0, xtr_bot=0, xtr_r_out=0, xtr_r_in=0, pos=FreeCAD.Vector)

	This is similar to make shp_cylhole_gen but not for a whole, just an arc.
I don’t know how where makeCircle starts its startangle and end angle
That is why I use this way

Makes a hollow cylinder in any position and direction, with optional extra
heights, and inner and outer radius, and various locations in the cylinder

pos_h = 1, pos_ra = 0, pos_rb = 0
pos at 1:
 axis_rb
 :
 :
 . .

 ((0)) ---- axis_ra

 . .

 axis_h
 :
 :

 :____:____:....: xtr_top
 | : : |
 | : : |
 | : : |
 | : 0 : | 0: pos would be at 0, if pos_h == 0
 | : : |
 | : : |
 |_:__1__:_|....>axis_ra
 :.:..o..:.:....: xtr_bot This o will be pos_o (orig)
 : : :
 : :..:
 : + :
 :r_in:
 : :
 :....:
 +
 r_out

Values for pos_ra (similar to pos_rb along it axis)

 axis_h
 :
 :

 :____:____:....: xtr_top
 | : : |
 | : : |
 | : : |
 2 1 0 : |....>axis_ra (if pos_h == 0)
 | : : |
 | : : |
 |_:_____:_|.....
 :.:..o..:.:....: xtr_bot This o will be pos_o (orig)
 : : :
 : :..:
 : + :
 :r_in:
 : :
 :....:
 +
 r_out

	Parameters

	
	r_out (float) – Radius of the outside cylinder

	r_in (float) – Radius of the inner hole of the cylinder

	h (float) – Height of the cylinder

	axis_h (FreeCAD.Vector) – Vector along the cylinder height

	axis_ra (FreeCAD.Vector) – Vector along the cylinder radius, a direction perpendicular to axis_h
it is not necessary if pos_ra == 0
It can be None, but if None, axis_rb has to be None
Defines the starting angle

	axis_rb (FreeCAD.Vector) – Vector along the cylinder radius,
a direction perpendicular to axis_h and axis_ra
it is not necessary if pos_ra == 0
It can be None

	end_angle (float (in degrees)) – Rotating from axis_ra in the direction determined by axis_h

	pos_h (int) – Location of pos along axis_h (0, 1)

	0: the cylinder pos is centered along its height, not considering
xtr_top, xtr_bot

	1: the cylinder pos is at its base (not considering xtr_h)

	pos_ra (int) – Location of pos along axis_ra (0, 1)

	0: pos is at the circunference center

	1: pos is at the inner circunsference, on axis_ra, at r_in from the
circle center (not at r_in + xtr_r_in)

	2: pos is at the outer circunsference, on axis_ra, at r_out from the
circle center (not at r_out + xtr_r_out)

	pos_rb (int) – Location of pos along axis_ra (0, 1)

	0: pos is at the circunference center

	1: pos is at the inner circunsference, on axis_rb, at r_in from the
circle center (not at r_in + xtr_r_in)

	2: pos is at the outer circunsference, on axis_rb, at r_out from the
circle center (not at r_out + xtr_r_out)

	xtr_top (float) – Extra height on top, it is not taken under consideration when
calculating the cylinder center along the height

	xtr_bot (float) – Extra height at the bottom, it is not taken under consideration when
calculating the cylinder center along the height or the position of
the base

	xtr_r_in (float) – Extra length of the inner radius (hollow cylinder),
it is not taken under consideration when calculating pos_ra or pos_rb.
It can be negative, so this inner radius would be smaller

	xtr_r_out (float) – Extra length of the outer radius
it is not taken under consideration when calculating pos_ra or pos_rb.
It can be negative, so this outer radius would be smaller

	pos (FreeCAD.Vector) – Position of the cylinder, taking into account where the center is

	Returns

	FreeCAD Shape of a arc of the cylinder

	Return type

	Shape

	
fcfun.shp_cylhole_bolthole(r_out, r_in, h, n_bolt=4, d_bolt=0, r_bolt2cen=0, axis_h=FreeCAD.Vector, axis_ra=FreeCAD.Vector, axis_rb=None, bolt_axis_ra=1, pos_h=0, pos_ra=0, pos_rb=0, xtr_top=0, xtr_bot=0, xtr_r_out=0, xtr_r_in=0, pos=FreeCAD.Vector)

	This is a generalization of shp_cylholedir and shp_cylhole
Makes a hollow cylinder in any position and direction, with optional extra
heights, and inner and outer radius, and various locations in the cylinder

Also has a number of nbolt holes along a radius r_bolt2cen
the bolts a equi spaced depending on the number

pos_h = 1, pos_ra = 0, pos_rb = 0
pos at 1:
 axis_rb
 :
 :
 . . o: are n_bolt(4) holes
 .o. .o.
 ((0)) ---- axis_ra
 .o. .o.
 . .

 axis_h
 :
 :

 :____:____:....: xtr_top
 | : : |
 | : : |
 | : : |
 | : 0 : | 0: pos would be at 0, if pos_h == 0
 | : : |
 | : : |
 |_:__1__:_|....>axis_ra
 :.:..o..:.:....: xtr_bot This o will be pos_o (orig)
 : : :
 : :..:
 : + :
 :r_in:
 : :
 :....:
 +
 r_out

Values for pos_ra (similar to pos_rb along it axis)

 axis_h
 :
 d_bolt :
 :.:............
 :_:_:__:__:_:....: xtr_top
 | : : : : |
 | : : : : |
 | : : : : |
 3 2 1 0 : : |....>axis_ra (if pos_h == 0)
 | : : : : |
 | : : : : |
 |_:_:_____:_:_|.....
 :.: :..o..:.:....: xtr_bot This o will be pos_o (orig)
 : : : :
 : : :..:
 : : + :
 : : r_in
 : :....:
 : +
 : r_bolt2cen:
 : :
 :....:
 +
 r_out

	Parameters

	
	r_out (float) – Radius of the outside cylinder

	r_in (float) – Radius of the inner hole of the cylinder

	h (float) – Height of the cylinder

	n_bolt (int) – Number of bolt holes, if zero no bolt holes

	d_bolt (float) – Diameter of the bolt holes

	r_bolt2cen (float) – Distance (radius) from the cylinder center to the bolt hole centers

	bolt_axis_ra (int) –
	1: the first bolt will be on axis ra

	0: the first bolt will be rotated half of the angle between to bolt
holes -> centered on the side

	axis_h (FreeCAD.Vector) – Vector along the cylinder height

	axis_ra (FreeCAD.Vector) – Vector along the cylinder radius, a direction perpendicular to axis_h
it is not necessary if pos_ra == 0
It can be None, but if None, axis_rb has to be None

	axis_rb (FreeCAD.Vector) – Vector along the cylinder radius, a direction perpendicular to axis_h and axis_ra
it is not necessary if pos_ra == 0
It can be None

	pos_h (int) – Location of pos along axis_h (0, 1)

	0: the cylinder pos is centered along its height, not considering
xtr_top, xtr_bot

	1: the cylinder pos is at its base (not considering xtr_h)

	pos_ra (int) – Location of pos along axis_ra (0, 1)

	0: pos is at the circunference center

	1: pos is at the inner circunsference, on axis_ra, at r_in from the
circle center (not at r_in + xtr_r_in)

	2: pos is at the center of the bolt hole (one of them)

	3: pos is at the outer circunsference, on axis_ra, at r_out from the
circle center (not at r_out + xtr_r_out)

	pos_rb (int) – Location of pos along axis_ra (0, 1)

	0: pos is at the circunference center

	1: pos is at the inner circunsference, on axis_rb, at r_in from the
circle center (not at r_in + xtr_r_in)

	2: pos is at the center of the bolt hole (one of them)

	3: pos is at the outer circunsference, on axis_rb, at r_out from the
circle center (not at r_out + xtr_r_out)

	xtr_top (float) – Extra height on top, it is not taken under consideration when
calculating the cylinder center along the height

	xtr_bot (float) – Extra height at the bottom, it is not taken under consideration when
calculating the cylinder center along the height or the position of
the base

	xtr_r_in (float) – Extra length of the inner radius (hollow cylinder),
it is not taken under consideration when calculating pos_ra or pos_rb.
It can be negative, so this inner radius would be smaller

	xtr_r_out (float) – Extra length of the outer radius
it is not taken under consideration when calculating pos_ra or pos_rb.
It can be negative, so this outer radius would be smaller

	pos (FreeCAD.Vector) – Position of the cylinder, taking into account where the center is

	Returns

	FreeCAD Shape of a cylinder with hole

	Return type

	Shape

	
fcfun.shp_cylhole_gen(r_out, r_in, h, axis_h=FreeCAD.Vector, axis_ra=None, axis_rb=None, pos_h=0, pos_ra=0, pos_rb=0, xtr_top=0, xtr_bot=0, xtr_r_out=0, xtr_r_in=0, pos=FreeCAD.Vector)

	This is a generalization of shp_cylholedir.
Makes a hollow cylinder in any position and direction, with optional extra
heights, and inner and outer radius, and various locations in the cylinder

pos_h = 1, pos_ra = 0, pos_rb = 0
pos at 1:
 axis_rb
 :
 :
 . .

 ((0)) ---- axis_ra

 . .

 axis_h
 :
 :

 :____:____:....: xtr_top
 | : : |
 | : : |
 | : : |
 | : 0 : | 0: pos would be at 0, if pos_h == 0
 | : : |
 | : : |
 |_:__1__:_|....>axis_ra
 :.:..o..:.:....: xtr_bot This o will be pos_o (orig)
 : : :
 : :..:
 : + :
 :r_in:
 : :
 :....:
 +
 r_out

Values for pos_ra (similar to pos_rb along it axis)

 axis_h
 :
 :

 :____:____:....: xtr_top
 | : : |
 | : : |
 | : : |
 2 1 0 : |....>axis_ra (if pos_h == 0)
 | : : |
 | : : |
 |_:_____:_|.....
 :.:..o..:.:....: xtr_bot This o will be pos_o (orig)
 : : :
 : :..:
 : + :
 :r_in:
 : :
 :....:
 +
 r_out

	Parameters

	
	r_out (float) – Radius of the outside cylinder

	r_in (float) – Radius of the inner hole of the cylinder

	h (float) – Height of the cylinder

	axis_h (FreeCAD.Vector) – Vector along the cylinder height

	axis_ra (FreeCAD.Vector) – Vector along the cylinder radius, a direction perpendicular to axis_h
it is not necessary if pos_ra == 0
It can be None, but if None, axis_rb has to be None

	axis_rb (FreeCAD.Vector) – Vector along the cylinder radius,
a direction perpendicular to axis_h and axis_ra
it is not necessary if pos_ra == 0
It can be None

	pos_h (int) – Location of pos along axis_h (0, 1)

	0: the cylinder pos is centered along its height, not considering
xtr_top, xtr_bot

	1: the cylinder pos is at its base (not considering xtr_h)

	pos_ra (int) – Location of pos along axis_ra (0, 1)

	0: pos is at the circunference center

	1: pos is at the inner circunsference, on axis_ra, at r_in from the
circle center (not at r_in + xtr_r_in)

	2: pos is at the outer circunsference, on axis_ra, at r_out from the
circle center (not at r_out + xtr_r_out)

	pos_rb (int) – Location of pos along axis_ra (0, 1)

	0: pos is at the circunference center

	1: pos is at the inner circunsference, on axis_rb, at r_in from the
circle center (not at r_in + xtr_r_in)

	2: pos is at the outer circunsference, on axis_rb, at r_out from the
circle center (not at r_out + xtr_r_out)

	xtr_top (float) – Extra height on top, it is not taken under consideration when
calculating the cylinder center along the height

	xtr_bot (float) – Extra height at the bottom, it is not taken under consideration when
calculating the cylinder center along the height or the position of
the base

	xtr_r_in (float) – Extra length of the inner radius (hollow cylinder),
it is not taken under consideration when calculating pos_ra or pos_rb.
It can be negative, so this inner radius would be smaller

	xtr_r_out (float) – Extra length of the outer radius
it is not taken under consideration when calculating pos_ra or pos_rb.
It can be negative, so this outer radius would be smaller

	pos (FreeCAD.Vector) – Position of the cylinder, taking into account where the center is

	Returns

	FreeCAD Shape of a cylinder with hole

	Return type

	Shape

	
fcfun.shp_cylholedir(r_out, r_in, h, normal=FreeCAD.Vector, pos=FreeCAD.Vector)

	Same as addCylHolePos, but just a shape
Same as shp_cylhole, but this one accepts any normal

	Parameters

	
	r_out (float) – Outside radius

	r_in (float) – Inside radius

	h (float) – Height

	normal (FreeCAD.Vector) – FreeCAD.Vector pointing to the normal (if its module is not one,
the height will be larger than h

	pos (FreeCAD.Vector) – Position of the cylinder

	Returns

	FreeCAD Shape of a cylinder with hole

	Return type

	Shape

	
fcfun.shp_extrud_face(face, length, vec_extr_axis, centered=0)

	Extrudes a face on any plane

	Parameters

	
	face (FreeCAD.Face) – Face to be extruded.

	length (float) – Extrusion length

	centered (int) – 1 if the extrusion is centered (simetrical) 0 if it is not

	vec_extr_axis (FreeCAD.Vector) – Typically, it will be the same as vec_facenormal.
by default, if it is 0, it will be equal to vec_facenormal
It doesn’t have to be on an axis, it can be diagonally

	Returns

	FreeCAD Shape of the Face

	Return type

	Shape

	
fcfun.shp_extrud_face_rot(face, vec_facenormal, vec_edgx, length, centered=0, vec_extr_axis=0)

	Extrudes a face that is on plane XY, includes a rotation

 Y
 :
____:___
\ : |
 \ :...|...... X
 \ |
 ____|

	Parameters

	
	face (FreeCAD.Face) – Face to be extruded. On plane XY

	vec_facenormal (FreeCAD.Vector) – Indicates where the normal of the
face will point. The normal of the original face is VZ, but this
function may rotate it depending on this argument
It has to be on an axis: ‘x’, ‘y’, ..

	vec_edgx (FreeCAD.Vector) – Indicates where the edge X will be after
the rotation
It has to be on an axis: ‘x’, ‘y’, ..

	length (float) – Extrusion length

	centered (int) – 1 if the extrusion is centered (simetrical) 0 if it is not

	vec_extr_axis (FreeCAD.Vector) – Typically, it will be the same as vec_facenormal.
by default, if it is 0, it will be equal to vec_facenormal
It doesn’t have to be on an axis, it can be diagonally

	Returns

	FreeCAD Shape of a face

	Return type

	Shape

	
fcfun.shp_face_lgrail(rail_w, rail_h, axis_l='x', axis_b='-z')

	Adds a shape of the profile (face) of a linear guide rail, the dent is just
rough, to be able to see that it is a profile

It will be centered on the width axis, and zero on the length and height
 Z
 |
 _________________ 5
 | | 4
 \ 3 / A little dent to see that it is a rail
 / \ 2
 | |
 | |
 |_________________| _____________ Y
 1

	Parameters

	
	rail_w (float) – Width of the rail

	rail_h (float) – Height of the rail

	axis_l (str) – Axis where the lenght of the rail is: ‘x’, ‘y’, ‘z’

	axis_b (str) – Axis where the base of the rail is poingint:
‘x’, ‘y’, ‘z’, ‘-x’, ‘-y’, ‘-z’,

	Returns

	FreeCAD Shape Face of a rail

	Return type

	Shape

	
fcfun.shp_face_rail(rail_w, rail_ws, rail_h, rail_h_plus=0, offs_w=0, offs_h=0, axis_l='x', axis_b='-z', hole_d=0, hole_relpos_z=0.4)

	Adds a shape of the profile (face) of a rail

 Z
 |
 ___________ 4 ___________
 | | ____________ rail_h_plus
 | | |
 | | 3 + rail_h
 / ___ \ |
 / / \ \ 2 | _______ hole_relpos_z*rail_h
| ___/ | |
|_________________| _____________ Y
 1
 |--rail_ws-|
|---- rail_w ----|

	Parameters

	
	rail_w (float) – Width of the rail

	rail_ws (float) – Small width of the rail

	rail_h (float) – Height of the rail

	rail_h_plus (float) – Above the rail can be some height to attach, o whatever
it is not inluded on rail_h

	offs_w (float) – Offset on the width, to make the hole

	offs_h (float) – Offset on the heigth, to make the hole

	axis_l (str) – The axis where the lenght of the rail is: ‘x’, ‘y’, ‘z’

	axis_b (str) – The axis where the base of the rail is poingint:
‘x’, ‘y’, ‘z’, ‘-x’, ‘-y’, ‘-z’,
It will be centered on the width axis, and zero on the length and height

	hole_d (float) – Diameter of a hole inside the rail. To have a leadscrew

	hole_relpos_z (float) – Relative position of the center of the hole, relative
to the height (the rail_h, not the total height (rail_h+rail_h_plus)

	Returns

	FreeCAD Shape Face of a rail

	Return type

	Shape

	
fcfun.shp_filletchamfer(shp, e_len, fillet=1, radius=1, axis='x', xpos_chk=0, ypos_chk=0, zpos_chk=0, xpos=0, ypos=0, zpos=0)

	Fillet or chamfer edges of a certain length, on a certain axis
and a certain coordinate

	Parameters

	
	shp (Shape) – Original shape we want to fillet or chamfer

	fillet (int) –
	1 if we are doing a fillet

	0 if it is a chamfer

	e_len (float) – Length of the edges that we want to fillet or chamfer
if e_len == 0, chamfer/fillet any length

	radius (float) – Radius of the fillet or chamfer

	axis (str) – Axis where the fillet will be

	xpos_chk (int) – If the position will be checked.

	ypos_chk (int) – If the position will be checked.

	zpos_chk (int) – If the position will be checked.

	xpos (float) – The X position

	ypos (float) – The Y position

	zpos (float) – The Z position

Notes

If axis = ‘x’, x_pos_check will not make sense

	Returns

	FreeCAD Shape with fillet/chamfer made

	Return type

	Shape

	
fcfun.shp_filletchamfer_dir(shp, fc_axis=FreeCAD.Vector, fillet=1, radius=1)

	Fillet or chamfer edges on a certain axis

	Parameters

	
	shp (Shape) – Original shape we want to fillet or chamfer

	fillet (int) –
	1 if we are doing a fillet

	0 if it is a chamfer

	radius (float) – The radius of the fillet or chamfer

	fc_axis (FreeCAD.Vector) – Axis where the fillet will be

	Returns

	FreeCAD Shape with fillet/chamfer made

	Return type

	Shape

	
fcfun.shp_filletchamfer_dirpt(shp, fc_axis=FreeCAD.Vector, fc_pt=FreeCAD.Vector, fillet=1, radius=1)

	Fillet or chamfer edges on a certain axis and a point contained
in that axis

	Parameters

	
	shp (Shape) – Original shape we want to fillet or chamfer

	fc_axis (FreeCAD.Vector) – Axis where the fillet will be

	fc_pt (FreeCAD.Vector) – Placement of the point

	fillet (int) –
	1 if we are doing a fillet

	0 if it is a chamfer

	radius (float) – Radius of the fillet or chamfer

	Returns

	FreeCAD Shape with fillet/chamfer made

	Return type

	Shape

	
fcfun.shp_filletchamfer_dirpts(shp, fc_axis, fc_pts, fillet=1, radius=1)

	Fillet or chamfer edges on a certain axis and a list of point contained
in that axis

	Parameters

	
	shp (Shape) – Original shape we want to fillet or chamfer

	fc_axis (FreeCAD.Vector) – Axis where the fillet will be

	fc_pts (FreeCAD.Vector) – Vector list of the points

	fillet (int) –
	1 if we are doing a fillet

	0 if it is a chamfer

	radius (float) – Radius of the fillet or chamfer

	Returns

	FreeCAD Shape with fillet/chamfer made

	Return type

	Shape

	
fcfun.shp_filletchamfer_dirs(shp, fc_axis_l, fillet=1, radius=1)

	Same as shp_filletchamfer_dir, but with a list of directions

	Parameters

	
	shp (Shape) – Original shape we want to fillet or chamfer

	fc_axis_l (list) – List of FreeCAD.Vector. Each vector indicates the axis
where the fillet/chamfer will be

	fillet (int) –
	1 if we are doing a fillet

	0 if it is a chamfer

	radius (float) – Radius of the fillet or chamfer

	Returns

	FreeCAD Shape with fillet/chamfer made

	Return type

	Shape

	
fcfun.shp_hollowbelt_dir(center_sep, rad1, rad2, rad_thick, height, fc_axis_h=FreeCAD.Vector, fc_axis_l=FreeCAD.Vector, ref_l=1, ref_h=1, xtr_h=0, xtr_nh=0, pos=FreeCAD.Vector)

	Makes a shape of 2 tangent circles (like a belt joining 2 circles).
check shp_belt_wire_dir

	Parameters

	
	center_sep (float) – Separation of the circle centers

	rad1 (float) – Internal radius of the first circle, on the opposite direction of
fc_axis_l

	rad2 (float) – Internal radius of the second circle, on the direction of fc_axis_l

	rad_thick (float) – Increment to rad1 and rad2 to make the thickness.

	height (float) – Height of the shape

	fc_axis_l (FreeCAD.Vector) – Vector on the direction circle centers, pointing to rad2

	fc_axis_h (FreeCAD.Vector) – Vector on the hieght direction

	ref_l (int) – Reference (zero) of the fc_axis_l

	1: reference on the center

	2: reference at one of the semicircle centers (point 2)
the other circle center will be on the direction of fc_axis_l

	3: reference at the end of rad1 circle
the other end will be on the direction of fc_axis_l

	ref_h (int) –
	1: reference is at the center of the height

	2: reference is at the bottom

	xtr_h (float) – If >0 it will be that extra height on the direction of fc_axis_h

	xtr_nh (float) – If >0 it will be that extra height on the opositve direction of
fc_axis_h

	pos (FreeCAD.Vector) – Position of the reference

	Returns

	FreeCAD Shape

	Return type

	Shape

	
fcfun.shp_nuthole(nut_r, nut_h, hole_h, xtr_nut=1, xtr_hole=1, fc_axis_nut=FreeCAD.Vector, fc_axis_hole=FreeCAD.Vector, ref_nut_ax=1, ref_hole_ax=1, pos=FreeCAD.Vector)

	Similar to NutHole, but creates a shape, in any direction.
Add a Nut hole (hexagonal) with a prism attached to introduce the nut
tolerances are included

 fc_axis_hole fc_axis_hole
 : :
 : _:_ ..
 | | | | :
 | | | | + hole_h
 |___|----fc_axis_nut | |--:
 | | \ / + nut_r
 |___| V....:
 : :
 :...:
 + nut_h

ref_nut:

 fc_axis_hole fc_axis_hole
 : :
 : _:_
 | | | |
 | | | |
 2_1_|----fc_axis_nut | |
 | | \ /
 |___| V

ref_hole:

 fc_axis_hole fc_axis_hole
 : :
 2 _2_
 | | | |
 | | | |
 |_1_|----fc_axis_nut | 1 |
 | | \ /
 |___| V

 fc_axis_hole
 :
 : ...
 |.2.|...xtr_hole (but pos is not referenced on the xtr)
 | |
 | |
 |_1_|----fc_axis_nut
 | | ___ but pos is still referenced on the axis of
 |___|..... | | the shank
 xtr_nut....|___|

	Parameters

	
	nut_r (float) – Circumradius of the hexagon

	nut_h (float) – Height of the nut, usually larger than the actual nut height, to be
able to introduce it

	hole_h (float) – The hole height, from the center of the hexagon to the side it will
see light

	xtr_nut (int) – 1 if you want 1 mm out of the hole, to cut

	xtr_hole (int) – 1 if you want 1 mm out of the hole, to cut

	fc_axis_nut (FreeCAD.Vector) – Axis of the shank of the nut

	fc_axis_hole (FreeCAD.Vector) – Axis of the shank of the nut

	ref_nut_ax (int) – If it is referenced to the center, symmetrical point on the
on the fc_axis_nut

	ref_hole_ax (int) – If it is referenced at the center of the shank, or at the
end of the hole, not counting extra

	pos (FreeCAD.Vector) – Position

	Returns

	FreeCAD Shape of a nut hole

	Return type

	Shape

	
fcfun.shp_regpolygon_dir_face(n_sides, radius, fc_normal=FreeCAD.Vector, fc_verx1=FreeCAD.Vector, pos=FreeCAD.Vector)

	Similar to shp_regpolygon_face, but in any direction of the space
makes the shape of a face of a regular polygon

	Parameters

	
	n_sides (int) – Number of sides of the polygon

	radius (float) – Circumradius of the polygon

	fc_normal (FreeCAD.Vector) – Direction of the normal

	fc_verx1 (FreeCAD.Vector) – Direction of the first vertex

	pos (FreeCAD.Vector) – Position of the center. Default (0,0,0)

	Returns

	FreeCAD Face of a regular polygon

	Return type

	Shape Face

	
fcfun.shp_regpolygon_face(n_sides, radius, n_axis='z', v_axis='x', edge_rot=0, pos=FreeCAD.Vector)

	Makes the shape of a face of a regular polygon

	Parameters

	
	n_sides (int) – Number of sides of the polygon

	radius (float) – Circumradius of the polygon

	n_axis (str) – Axis of the normal: ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’

	v_axis (str) – Perpendicular to n_axis, pointing to the first vertex,
unless, x_angle is != 0. the vertex will be rotated
x_angle degrees for v_axis

	x_angle (float) – If zero, the first vertex will be on axis v_axis
if x_angle != 0, it will rotated some angle

	pos (FreeCAD.Vector) – Position of the center. Default (0,0,0)

	Returns

	FreeCAD Face of a regular polygon

	Return type

	Shape Face

	
fcfun.shp_regprism(n_sides, radius, length, n_axis='z', v_axis='x', centered=0, edge_rot=0, pos=FreeCAD.Vector)

	Makes a shape of a face of a regular polygon

	Parameters

	
	n_sides (int) – Number of sides of the polygon

	radius (float) – Circumradius of the polygon

	length (float) – Length of the polygon

	n_axis (str) – Axis of the normal: ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’

	v_axis (str) – Perpendicular to n_axis, pointing to the first vertex,
unless, x_angle is != 0. the vertex will be rotated
x_angle degrees for v_axis

	centered (int) – 1 if the extrusion is centered on pos (symmetrical)

	x_angle (float) – if zero, the first vertex will be on axis v_axis
if x_angle != 0, it will rotated some angle

	pos (FreeCAD.Vector) – Position of the center. Default (0,0,0)

	Returns

	FreeCAD Shape of a regular prism

	Return type

	Shape

	
fcfun.shp_regprism_dirxtr(n_sides, radius, length, fc_normal=FreeCAD.Vector, fc_verx1=FreeCAD.Vector, centered=0, xtr_top=0, xtr_bot=0, pos=FreeCAD.Vector)

	Similar to shp_regprism_xtr, but in any direction
makes a shape of a face of a regular polygon.
Includes the posibility to add extra length on top and bottom.
On top is easy, but at the bottom, the reference will be no counting that
extra lenght added. This is useful to make boolean difference

	Parameters

	
	n_sides (int) – Number of sides of the polygon

	radius (float) – Circumradius of the polygon

	length (float) – Length of the polygon

	fc_normal (FreeCAD.Vector) – Direction of the normal

	fc_verx1 (FreeCAD.Vector) – Direction of the first vertex

	centered (int) – 1 if the extrusion is centered on pos (symmetrical)

	xtr_top (float) – Add an extra lenght on top. If 0, nothing added

	xtr_bot (float) – Add an extra lenght at the bottom. If 0, nothing added

	pos (FreeCAD.Vector) – Position of the center. Default (0,0,0)

	Returns

	FreeCAD Shape of a regular prism

	Return type

	Shape

	
fcfun.shp_regprism_xtr(n_sides, radius, length, n_axis='z', v_axis='x', centered=0, xtr_top=0, xtr_bot=0, edge_rot=0, pos=FreeCAD.Vector)

	makes a shape of a face of a regular polygon.
Includes the posibility to add extra length on top and bottom.
On top is easy, but at the bottom, the reference will be no counting that
extra lenght added. This is useful to make boolean difference

	Parameters

	
	n_sides (int) – Number of sides of the polygon

	radius (float) – Circumradius of the polygon

	length (float) – Length of the polygon

	n_axis (str) – Axis of the normal: ‘x’, ‘-x’, ‘y’, ‘-y’, ‘z’, ‘-z’

	v_axis (str) – Perpendicular to n_axis, pointing to the first vertex,
unless, x_angle is != 0. the vertex will be rotated
x_angle degrees for v_axis

	centered (int) – 1 if the extrusion is centered on pos (symmetrical)

	xtr_top (float) – Add an extra lenght on top. If 0, nothing added

	xtr_bot (float) – Add an extra lenght at the bottom. If 0, nothing added

	x_angle (float) – If zero, the first vertex will be on axis v_axis
if x_angle != 0, it will rotated some angle

	pos (FreeCAD.Vector) – Position of the center. Default (0,0,0)

	Returns

	FreeCAD Shape of a regular prism

	Return type

	Shape

	
fcfun.shp_rndrect_face(x, y, r=0.5, pos_z=0)

	Same as shpRndRectWire

	Parameters

	
	x (float) – Dimension of the base, on the X axis

	y (float) – Dimension of the height, on the Y axis

	r (float) – Radius of the rouned edge.

	zpos (float) – Position on the Z axis

	Returns

	FreeCAD Face of a rounded edges rectangle

	Return type

	Shape Face

	
fcfun.shp_stadium_dir(length, radius, height, fc_axis_h=FreeCAD.Vector, fc_axis_l=FreeCAD.Vector, fc_axis_s=FreeCAD.Vector, ref_l=1, ref_s=1, ref_h=1, xtr_h=0, xtr_nh=0, pos=FreeCAD.Vector)

	Makes a stadium shape in any direction

fc_axis_s
 :
 :_________ ref_l = 2, ref_s = 1
 / \
 3 2 1) -------> fc_axis_l
 5_____4____/

fc_axis_h
 _:___________
| | :
| | :
| 1 | ref_h=1 + h
| | :
|______2______|.......> fc_axis_l: ref_h=2

	Parameters

	
	length (float) – Length of the parallels (distance between semcircle centers)

	height (float) – Height the stadium

	fc_axis_s (FreeCAD.Vector) – Direction on the short axis, not necessary if ref_s == 1
it will be the perpendicular of the other 2 vectors

	fc_axis_h (FreeCAD.Vector) – Vector on the height direction

	ref_l (int) – Reference (zero) of the fc_axis_l

	1: reference on the center (makes axis_s symmetrical)

	2: reference at one of the semicircle centers (point 2)
the other circle center will be on the direction of fc_axis_l

	3: reference at the end (point 3)
the other end will be on the direction of fc_axis_l

	ref_s (int) – Reference (zero) of the fc_axis_s

	1: reference at the center (makes axis_l symmetrical): p 1,2,3

	2: reference at the parallels lines: p: 4, 5
the other parallel will be on the direction of fc_axis_s

	ref_h (int) –
	1: reference is at the center of the height

	2: reference is at the bottom

	xtr_h (float) – If >0 it will be that extra height on the direction of fc_axis_h

	xtr_nh (float) – If >0 it will be that extra height on the opositve direction of
fc_axis_h

	pos (FreeCAD.Vector) – Placement

	Returns

	FreeCAD Shape of a stadium

	Return type

	Shape

	
fcfun.shp_stadium_face(l, r, axis_rect='x', pos_z=0)

	Same as shp_stadium_wire, but returns a face

	Parameters

	
	l (float) – Length of the parallels (from center to center)

	r (float) – Radius of the semicircles

	axis_rect (str) – ‘x’ the parallels are on axis X (as in the drawing)
‘y’ the parallels are on axis Y

	pos_z (float) – Position on the Z axis

	Returns

	FreeCAD Face of a stadium

	Return type

	Shape Face

	
fcfun.shp_stadium_wire(l, r, axis_rect='x', pos_z=0)

	Creates a wire (shape), that is a rectangle with semicircles at a pair of
opposite sides. Also called discorectangle
it will be centered on XY

 Y
 _____ .. r |_X
(_____)--
 : :
 :.l.:

	Parameters

	
	l (float) – Length of the parallels (from center to center)

	r (float) – Radius of the semicircles

	axis_rect (str) – ‘x’ the parallels are on axis X (as in the drawing)
‘y’ the parallels are on axis Y

	pos_z (float) – Position on the Z axis

	Returns

	FreeCAD Wire of a stadium

	Return type

	Shape Wire

	
fcfun.shp_stadium_wire_dir(length, radius, fc_axis_l=FreeCAD.Vector, fc_axis_s=FreeCAD.Vector, ref_l=1, ref_s=1, pos=FreeCAD.Vector)

	Same as shp_stadium_wire but in any direction
Also called discorectangle

 fc_axis_s
 |
 _____ .. radius |--> fc_axis_l
 (_____)--
 : :
 :.l.:
 length

 fc_axis_s in this drawing,
 : p_edge the zero is on point 2
 :_________ ref_l = 2, ref_s = 1
 / \
 3 2 1) -------> fc_axis_l
 5_____4____/ n_edge
 n_edge
n circle p circle

	Parameters

	
	length (float) – Length of the parallels (distance between semcircle centers)

	radius (float) – Radius of the semicircles

	fc_axis_l (FreeCAD.Vector) – Vector on the direction of the paralles

	fc_axis_s (FreeCAD.Vector) – Vector on the direction perpendicular to the paralles

	ref_l (int) – Reference (zero) of the fc_axis_l

	1 reference on the center (makes axis_s symmetrical)

	2 reference at one of the semicircle centers (point 2)
the other circle center will be on the direction of fc_axis_l

	3 reference at the end (point 3)
the other end will be on the direction of fc_axis_l

	ref_s (int) – Reference (zero) of the fc_axis_s

	1 reference at the center (makes axis_l symmetrical): p 1,2,3

	2 reference at the parallels lines: p: 4, 5
the other parallel will be on the direction of fc_axis_s

	pos (FreeCAD.Vector) – FreeCAD vector of the position of the reference

	Returns

	FreeCAD Wire of a stadium

	Return type

	Shape Wire

	
fcfun.vecname_paral(vec1, vec2)

	Given to vectors by name ‘x’, ‘-x’, … indicates if they are parallel
or not

	
fcfun.wire_beltclamp(d, w, corner_r, conn_d, conn_sep, xtr_conn_d=0, closed=0, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, pos_d=0, pos_w=0, pos=FreeCAD.Vector)

	Creates a wire following 2 pulleys and ending in a belt clamp
But it is a wire in FreeCAD, has no volumen

 axis_w
 :
 :
pulley1 pulley2

 () ()--------> axis_d
 ---------=== () () ===--------
 clamp1 clamp2

 1 0 2 3 45 67 8 9 10 11 pos_d
 : : : :
 : : : :
 : :............: :
 : + :
 : clamp_sep :
 : :
 :.................................:
 +
 pull_sep_d

 pos_w points:

 axis_w
 : pull2
 : clamp1 clamp2
 2_ 3-
 (1) - - pull_sep_w (positive)
(0) - - - - - - - - - - - - - - - 5- - -
 6 ______.............:+ clamp_pull1_w (neg)
 4- 7 <) (> :+ clamp_w
 8 ______.............:

 axis_w
 : pull2
 : clamp1 clamp2
 _ -
 () - - pull_sep_w (positive)
() - - - - - - - - - - - - - - - - - -
 ______.............:+ clamp_pull1_w (neg)
 - <) (> :+ clamp_w
 ______.............:
 : : : :: : : : :
 : : : :cyl_r : : : :
 : : :...: :...: :.......:
 : : : + + : : +
 : : : clamp_cyl_sep : : +
 : : : : : clamp_pull2_d
 : : : :...:
 : : : : +
 : : :..................: clamp_d
 : : : +
 : : : clamp_sep
 : :...:
 : : +
 : : clamp_d
 : :
 :......:
 +
 clamp_pull1_d

	Parameters

	
	pull1_d (float) – Diameter of pulley 1

	pull2_d (float) – Diameter of pulley 2

	pull_sep_d (float) – Separation between the 2 pulleys centers along axis_d
if positive, pulley 2 is further away in the direction of axis_d
if negative, pulley 2 is further away opposite to the direction of
axis_d

	pull_sep_w (float) – Separation between the 2 pulleys centers along axis_w
if positive, pulley 2 is further away in the direction of axis_w
if negative, pulley 2 is further away opposite to the direction of
axis_w

	clamp_pull1_d (float) – Separation between the clamp (side closer to the center) and the center
of the pulley1

	clamp_pull1_w (float) – Separation between the center of the clamp and the center of the
pulley1
if positive, the clamp is further away in the direction of axis_w
if negative, the clamp is further away opposite to the direction of
axis_w

	clamp_d (float) – Length of the clamp (same for each clamp)

	clamp_w (float) – Width of inner space (same for each clamp)

	clamp_sep (float) – Separation between clamps, the closest ends

	clamp_cyl_sep (float) – Separation between clamp and the center of the cylinder (or the center)
of the larger cylinder (when is a belt shape)

	cyl_r (float) – Radius of the cylinder for the belt, if it is not a cylinder but a
shape of 2 cylinders: <) , then the raidius of the larger one

	axis_d (FreeCAD.Vector) – Coordinate System Vector along the depth

	axis_w (FreeCAD.Vector) – Coordinate System Vector along the width

	pos_d (int) – Location of pos along the axis_d, see drawing

	0: center of the pulley 1

	1: end of pulley 1

	2: end of clamp 1, closest end to pulley 1

	3: other end of clamp 1, closest to cylinder

	4: center of cylinder (or shape <) 1

	5: external radius of cylinder 1

	6: external radius of cylinder 2

	7: center of cylinder (or shape (> 2

	8: end of clamp 2, closest to cylinder

	9: other end of clamp 2, closest end to pulley 2

	10: center of pulley 2

	11: end of pulley 2

	pos_w (int) – Location of pos along the axis_w, see drawing

	0: center of pulley 1

	1: center of pulley 2

	2: end (radius) of pulley 1 along axis_w

	3: end (radius) of pulley 2 along axis_w

	4: other end (radius) of pulley 1 opposite to axis_w

	5: other end (radius) of pulley 2 opposite to axis_w

	6: clamp space, closest to the pulley

	7: center of clamp space

	8: clamp space, far away from the pulley

	pos (FreeCAD.Vector) – Position of the reference

	Returns

	FreeCAD Wire of a belt clamped

	Return type

	Shape Wire

	
fcfun.wire_cableturn(d, w, corner_r, conn_d, conn_sep, xtr_conn_d=0, closed=0, axis_d=FreeCAD.Vector, axis_w=FreeCAD.Vector, pos_d=0, pos_w=0, pos=FreeCAD.Vector)

	Creates a electrical wire turn, in any direction
But it is a wire in FreeCAD, has no volumen

 axis_d
 :
 :
:w
: : : pos_d
 ____________ 3
/ \ :..corner_r
| | :
| | :
| | + d 2
| | :
| | :
| | :
 ___ o ____/: 1
 \ / :
 | | + conn_d
 | | :
 | |............:...........axis_w 0
 : :
 conn_sep

1 0 pos_w

pos_o (orig) is at pos_d=0, pos_w=0, marked with o

	Parameters

	
	d (float) – Depth/length of the turn

	w (float) – Width of the turn

	corner_r (float) – Radius of the corners

	conn_d (float) – Depth/length of the connector part

	0: there is no connecting wire

	xtr_conn_d (float) – If conn_d > 0, there can be and extra length of connector to make
unions, it will not be counted as pos_d = 0
It will not work well if it is closed

	conn_sep (float) – Separation of the connectors

	closed (boolean) –
	0 : the ends are not closed

	1 : the ends are closed

	axis_d (FreeCAD.Vector) – Coordinate System Vector along the depth

	axis_w (FreeCAD.Vector) – Coordinate System Vector along the width

	pos_d (int) – Location of pos along the axis_d (0,1,2,3), see drawing

	0: reference at the beginning of the connector

	1: reference at the beginning of the turn, at the side of the connector

	2: reference at the middle of the turn

	3: reference at the end of the turn

	pos_w (int) – Location of pos along the axis_w (0,1), see drawing

	0: reference at the center of simmetry

	1: reference at the end of the turn

	pos (FreeCAD.Vector) – Position of the reference

	Returns

	FreeCAD Wire of a electrical wire

	Return type

	Shape Wire

	
fcfun.wire_lgrail(rail_w, rail_h, axis_w=FreeCAD.Vector, axis_h=FreeCAD.Vector, pos_w=0, pos_h=0, pos=FreeCAD.Vector)

	Creates a wire of a linear guide rail, the dent is just
rough, to be able to see that it is a profile

 axis_h
 :
 ne ________2________ e
 | |
 nd| | d
 \ nc c / A little dent to see that it is a rail
 nb / 1 \ b
 | |
 | |
 | |
 na|________o________|a axis_w
 0 1

 rail_h/8
 : : :
 ne ________2______:_:....
 | | :+ rail_h/4
 nd| |.................
 \ nc c / rail_h/8 + rail_h/4
 nb / 1 \ rail_h/8...:
 | | :
 | | + rail_h/2
 | | :
 na|________o________|a ..:............ axis_w
 0 1

pos_o (origin) is at pos_w = 0, pos_h = 0

	Parameters

	
	rail_w (float) – Width of the rail

	rail_h (float) – Height of the rail

	axis_w (FreeCAD.Vector) – The axis where the width of the rail is

	axis_h (FreeCAD.Vector) – The axis where the height of the rail is

	pos_w (int) – Location of pos along axis_w
* 0 : center of symmetry
* 1 : end of the rail

	pos_h (int) – Location of pos along axis_h
* 0 : bottom
* 1 : middle point (this is kind of non-sense)
* 2 : top point

	pos (FreeCAD.Vector) – Position, at the point defined by pos_w and pos_h

	Returns

	Wire of a rail

	Return type

	FreeCAD Wire

	
fcfun.wire_sim_xy(vecList)

	Creates a wire (shape), from a list of points on the positive quadrant of XY
the wire is simmetrical to both X and Y

 Y
 |_ X

 __|__
/ | \ We receive these points
| | |
| |-------- z=0
| |
_____/

	Parameters

	vecList (list) – List of FreeCAD Vectors, the have to be in order clockwise
if the first or the last points are not on the axis, a new point will be
created

 Python Module Index

 Python Module Index

 c |
 f |
 p

 		 	

 		
 c	

 	
 	
 comps	

 		 	

 		
 f	

 	
 	
 fcfun	

 	
 	
 filter_holder_clss	

 		 	

 		
 p	

 	
 	
 parts	

 Index

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | V
 | W

A

 	
 	add2CylsHole() (in module fcfun)

 	add3CylsHole() (in module fcfun)

 	add_fcobj() (in module fcfun)

 	addBolt() (in module fcfun)

 	addBoltNut_hole() (in module fcfun)

 	addBox() (in module fcfun)

 	addBox_cen() (in module fcfun)

 	addCyl() (in module fcfun)

 	addCyl_pos() (in module fcfun)

 	
 	addCylHole() (in module fcfun)

 	addCylHolePos() (in module fcfun)

 	addCylPos() (in module fcfun)

 	aluprof_vec() (in module fcfun)

 	AluProfBracketPerp (class in parts)

 	AluProfBracketPerpFlap (class in parts)

 	AluProfBracketPerpTwin (class in parts)

 	axis_h (parts.ThinLinBearHouse attribute)

 	(parts.ThinLinBearHouse1rail attribute)

 	(parts.ThinLinBearHouseAsim attribute)

B

 	
 	BeltClamp (class in beltcl)

 	beltclamp_blk_t (filter_holder_clss.ShpFilterHolder attribute)

 	beltpost_l (filter_holder_clss.ShpFilterHolder attribute)

 	bolt2bolt_wid (parts.ThinLinBearHouseAsim attribute)

 	bolt2cen_dep (parts.ThinLinBearHouseAsim attribute)

 	
 	bolt2cen_wid_n (parts.ThinLinBearHouseAsim attribute)

 	bolt2cen_wid_p (parts.ThinLinBearHouseAsim attribute)

 	boltcen_axis_dist (parts.ThinLinBearHouse attribute)

 	(parts.ThinLinBearHouse1rail attribute)

 	boltcen_perp_dist (parts.ThinLinBearHouse attribute)

 	(parts.ThinLinBearHouse1rail attribute)

C

 	
 	calc_desp_ncen() (in module fcfun)

 	calc_rot() (in module fcfun)

 	calc_rot_z() (in module fcfun)

 	
 	clamp_lrbeltpostcen_dist (filter_holder_clss.ShpFilterHolder attribute)

 	
 comps

 	module

D

 	
 	d0_cen (filter_holder_clss.ShpFilterHolder attribute)

 	(tensioner_clss.TensionerSet attribute)

 	depth (parts.IdlePulleyHolder attribute)

 	Din125Washer (class in fc_clss)

 	
 	Din9021Washer (class in fc_clss)

 	Din912Bolt (class in fc_clss)

 	Din934Nut (class in fc_clss)

 	DoubleBeltClamp (class in beltcl)

E

 	
 	edgeonaxis() (in module fcfun)

 	
 	equ() (in module fcfun)

F

 	
 	f_breadboard() (in module comp_optic)

 	f_cagecube() (in module comp_optic)

 	f_cagecubehalf() (in module comp_optic)

 	fc_calc_desp_ncen() (in module fcfun)

 	fc_calc_rot() (in module fcfun)

 	fc_isonbase() (in module fcfun)

 	fc_isparal() (in module fcfun)

 	fc_isparal_nrm() (in module fcfun)

 	fc_isperp() (in module fcfun)

 	
 fcfun

 	module

 	
 	fcoFat (parts.IdlePulleyHolder attribute)

 	fillet_len() (in module fcfun)

 	filletchamfer() (in module fcfun)

 	filt_hole_d (filter_holder_clss.ShpFilterHolder attribute)

 	filt_hole_h (filter_holder_clss.ShpFilterHolder attribute)

 	filt_hole_w (filter_holder_clss.ShpFilterHolder attribute)

 	
 filter_holder_clss

 	module

 	fuseshplist() (in module fcfun)

G

 	
 	get_bolt_bearing_sep() (in module fcfun)

 	get_bolt_end_sep() (in module fcfun)

 	get_fc_perpend1() (in module fcfun)

 	get_fclist_4perp2_fcvec() (in module fcfun)

 	get_fclist_4perp2_vecname() (in module fcfun)

 	get_fclist_4perp_fcvec() (in module fcfun)

 	get_fclist_4perp_vecname() (in module fcfun)

 	get_fcvectup() (in module fcfun)

 	
 	get_nameofbasevec() (in module fcfun)

 	get_positive_vecname() (in module fcfun)

 	get_rot() (in module fcfun)

 	get_tangent_2circles() (in module fcfun)

 	get_tangent_circle_pt() (in module fcfun)

 	get_vecname_perpend1() (in module fcfun)

 	get_vecname_perpend2() (in module fcfun)

 	getfcvecofname() (in module fcfun)

 	getvecofname() (in module fcfun)

H

 	
 	h0_cen (filter_holder_clss.ShpFilterHolder attribute)

 	(tensioner_clss.TensionerSet attribute)

 	
 	height (parts.IdlePulleyHolder attribute)

I

 	
 	IdlePulleyHolder (class in parts)

L

 	
 	Lb1cPlate (class in comp_optic)

 	Lb2cPlate (class in comp_optic)

 	lcp01m_plate() (in module comp_optic)

 	
 	lcpb1m_base() (in module comp_optic)

 	LinBearHouse (class in parts)

 	lr_beltpost_r (filter_holder_clss.ShpFilterHolder attribute)

M

 	
 	metric (fc_clss.Din125Washer attribute)

 	(fc_clss.Din9021Washer attribute)

 	model_type (fc_clss.Din125Washer attribute)

 	(fc_clss.Din9021Washer attribute)

 	
 	
 module

 	comps

 	fcfun

 	filter_holder_clss

 	parts

N

 	
 	n1_bot_axis (parts.ThinLinBearHouse attribute)

 	(parts.ThinLinBearHouse1rail attribute)

 	n1_perp (parts.ThinLinBearHouse attribute)

 	(parts.ThinLinBearHouse1rail attribute)

 	n1_slide_axis (parts.ThinLinBearHouse attribute)

 	(parts.ThinLinBearHouse1rail attribute)

 	
 	nbot_ax (parts.ThinLinBearHouseAsim attribute)

 	NemaMotorHolder (class in parts)

 	NemaMotorPulleySet (class in partset)

 	nfro_ax (parts.ThinLinBearHouseAsim attribute)

 	nsid_ax (parts.ThinLinBearHouseAsim attribute)

 	NutHole (class in fcfun)

P

 	
 	PartAluProf (class in comps)

 	PartFilterHolder (class in filter_holder_clss)

 	PartLinGuideBlock (class in comps)

 	
 parts

 	module

 	
 	PrizLed() (in module comp_optic)

 	prnt_ax (filter_holder_clss.ShpFilterHolder attribute)

 	(tensioner_clss.TensionerSet attribute)

R

 	
 	regpolygon_dir_vecl() (in module fcfun)

 	
 	regpolygon_vecl() (in module fcfun)

 	rotateview() (in module fcfun)

S

 	
 	shp_2stadium_dir() (in module fcfun)

 	shp_aluwire_dir() (in module fcfun)

 	shp_belt_dir() (in module fcfun)

 	shp_belt_wire_dir() (in module fcfun)

 	shp_bolt() (in module fcfun)

 	shp_bolt_dir() (in module fcfun)

 	shp_boltnut_dir_hole() (in module fcfun)

 	shp_box_dir() (in module fcfun)

 	shp_box_dir_xtr() (in module fcfun)

 	shp_box_rot() (in module fcfun)

 	shp_boxcen() (in module fcfun)

 	shp_boxcenchmf() (in module fcfun)

 	shp_boxcenfill() (in module fcfun)

 	shp_boxcenxtr() (in module fcfun)

 	shp_boxdir_fillchmfplane() (in module fcfun)

 	shp_cableturn() (in module fcfun)

 	shp_cir_fillchmf() (in module fcfun)

 	shp_cyl() (in module fcfun)

 	shp_cyl_gen() (in module fcfun)

 	shp_cylcenxtr() (in module fcfun)

 	shp_cylfilletchamfer() (in module fcfun)

 	shp_cylhole() (in module fcfun)

 	shp_cylhole_arc() (in module fcfun)

 	shp_cylhole_bolthole() (in module fcfun)

 	shp_cylhole_gen() (in module fcfun)

 	shp_cylholedir() (in module fcfun)

 	
 	shp_extrud_face() (in module fcfun)

 	shp_extrud_face_rot() (in module fcfun)

 	shp_face_lgrail() (in module fcfun)

 	shp_face_rail() (in module fcfun)

 	shp_filletchamfer() (in module fcfun)

 	shp_filletchamfer_dir() (in module fcfun)

 	shp_filletchamfer_dirpt() (in module fcfun)

 	shp_filletchamfer_dirpts() (in module fcfun)

 	shp_filletchamfer_dirs() (in module fcfun)

 	shp_hollowbelt_dir() (in module fcfun)

 	shp_nuthole() (in module fcfun)

 	shp_regpolygon_dir_face() (in module fcfun)

 	shp_regpolygon_face() (in module fcfun)

 	shp_regprism() (in module fcfun)

 	shp_regprism_dirxtr() (in module fcfun)

 	shp_regprism_xtr() (in module fcfun)

 	shp_rndrect_face() (in module fcfun)

 	shp_stadium_dir() (in module fcfun)

 	shp_stadium_face() (in module fcfun)

 	shp_stadium_wire() (in module fcfun)

 	shp_stadium_wire_dir() (in module fcfun)

 	ShpFilterHolder (class in filter_holder_clss)

 	shpRndRectWire() (in module fcfun)

 	SimpleEndstopHolder (class in parts)

 	Sk_dir (class in comps)

 	SM1TubelensSm2() (in module comp_optic)

T

 	
 	TensionerSet (class in tensioner_clss)

 	ThinLinBearHouse (class in parts)

 	ThinLinBearHouse1rail (class in parts)

 	
 	ThinLinBearHouseAsim (class in parts)

 	ThLed30() (in module comp_optic)

 	tot_d (tensioner_clss.TensionerSet attribute)

 	tot_d_extend (tensioner_clss.TensionerSet attribute)

V

 	
 	vecname_paral() (in module fcfun)

W

 	
 	w0_cen (filter_holder_clss.ShpFilterHolder attribute)

 	(tensioner_clss.TensionerSet attribute)

 	width (parts.IdlePulleyHolder attribute)

 	
 	wire_beltclamp() (in module fcfun)

 	wire_cableturn() (in module fcfun)

 	wire_lgrail() (in module fcfun)

 	wire_sim_xy() (in module fcfun)

_images/hall_stop_holder_21_10.png

_images/linear_guide_SEBWM16.png

_images/filter_holder.png

_images/filter_stage.png

_images/CageCube.png

_images/nema17_holder_rail25_8.png

_images/CageCubeHalf.png

_images/nema17_holder_rail35_8.FCStd.png

_images/Bolts.png

_images/nema17_20.png

_images/BreadBoard.png

_images/nema17_32.png

_images/Lb2c_Plate.png

_images/Lcp01m_plate.png

_images/sk08.png

_images/Lb1cm_Plate.png

_images/sk08_pillow.png

_images/Lcpb1mBase.png

_images/Nuts.png

_images/Belt_clamp_double.png

_images/Belt_clamp_simple.png

_static/Mechatronic.png
\ |"|et:hatr‘t:nit:%?j

_images/PrizMatrix_Led.png

nav.xhtml

 Table of Contents

 		
 Mechatronic Documentation

 		
 Introduccion

 		
 Mechatronic

 		
 How it works

 		
 History

 		
 Install

 		
 Tutorial

 		
 YouTube Tutorials in Spanish

 		
 Tutorial CAD 1 - Create part

 		
 Tutorial CAD 2 - Crate a system

 		
 Wiki

 		
 3D Model library

 		
 Mechatronic

 		
 Optical

 		
 Systems library

 		
 Filter Stage

 		
 Functions Library

 		
 fcfun

 		
 UML

 		
 3D model details

 		
 Mechanical

 		
 Optical

 		
 Functions details

 		
 fcfun

_images/thinlinbearhouse1rail_lm8.png

_images/thinlinbearhouse1rail_lm8_bot.png

_images/TubeLense_15.png

_static/minus.png

_images/TubeLense_30.png

_static/plus.png

_images/Profiles.png

_images/ThLed30.png

_static/file.png

_images/Tutorial_1.3.png
Fs FreecaD 018 -
Fle Edt View Tooks Macro Machatonic Parts Windows Help

[Osacsiscms-o- 2R @ < QWD
na®- @@@@mm%@:‘ & DS

Combo View
Model Tasks DOCUMENTS
Labels & Attributes
Application
Recent files
Tip: Adjust the number of recent files to be shown here in menu Edit -> Preferences -> General -> Size of recent fle list
Examples
) vahk
ArchDetail FCStd DrawingExample.F EngineBlock FCStd FemCalculixCantil FemCalculixCantil FemCalculixCantil ignExampl R fieinp 65
219Kb cstd 65Kb ever2D.FCStd everdD.FCStd ever3D_newSolver. i
250Kb 84Kb. 108Kb FCstd 37Kb. mKh
134Kb
Schenkel.stp
576Kb
View /\ Data o stertpage B

_images/Tutorial_1.4.png
Fs FreecaD 018
Fle Edt View Tooks Maco MachatonicParts Windows Help

@& o SO0 -2 - &N [Enorne]
09 DOIFTIDH 4 on

Model | Tasks

Labels & Atrbutes
Application
P8 Unmamed Top
;
v
Property Value
b
Fostartpage [it Urmamed: 1@
O CADY 745 mmx4,14mm

_images/Tutorial_1.1.png
Fs FreecaD 018 -

Fle it View Toos Moco Windous Hep
(1 =g

OWaE X EES -2
N9 - DOITHTIDH % 00 0D €Ep O +—

Combo View
Model Tasks DOCUMENTS
Labels & Attributes
Application
Recent files
Tip: Adjust the number of recent files to be shown here in menu Edit -> Preferences -> General -> Size of recent fle list
Examples
) vahk
ArchDetail FCStd DrawingExample.F EngineBlock FCStd FemCalculixCantil FemCalculixCantil FemCalculixCantil ignExampl R fieinp 65
219Kb cstd 65Kb ever2D.FCStd everdD.FCStd ever3D_newSolver. i
250Kb 84Kb. 108Kb FCstd 37Kb. mKh
134Kb
Schenkel.stp
576Kb
View /\ Data o stertpage B

_images/Tutorial_1.2.png
Fs FreecaD 018 -
Fle Edt View Tooks Maco Windows Hep

9 = > o =
D@as 460 N (1 =14
~
vae- @@@@@@@% €T +=
Combo View
Model Tasks
Labels & Attributes
Application
Recent files
@ weo Tip: Adjust the number of recent files to be shown here in menu Edit -> Preferences > General > Size of recent il list
Examples

) vahk

ArchDetail FCStd FemCalculixCantil FemCalculixCantil FemCalculixCantil ignExampl R fieinp 65

219Kb ever2D.FCStd everdD.FCStd ever3D_newSolver. i

84Kb. 108Kb FCstd 37Kb. mKh
134Kb

Schenkel.stp

576Kb
View /\ Data o stertpage B

_images/Tutorial_1.5.png
Fs FreecaD 018
Fle Edt View Tooks Maco MachatonicParts Windows Help

WAL EAS- E’_.-I>
N‘l. ®ﬁ®@@®®% omis @

- X
Top
b
[T 4

o stertpage 1 e unnamed: 1 0

0 cAD~ 745mmx 4,14 mm

_images/tensioner.png
©)

%

_images/Tutorial_1.6.png
Fs FreecaD 018
Fle £t View Tools Mocro MachationicParts Windows Help

U@dson O0-2- W [Ewee | @EE=D

)

<A

09 DOIFTEIDH S 40ecdosdUed~DP8Y

Model | Tasks

View /\ pata Fo stertpage @ iy umamed: 1+ 8
Preselected: shafts_holder - Unnamed.shaft_holder Edge1 (0460329, 37, 0)

O CAD¥ 99,11 mmx 55,10 mm

_images/Tutorial_1.7.png
R FreecaD 018 - X
Fle Edt View Tools Macro MachatronicParts Windows Help
1) =4

TWAE A EOS-2-BIN
09 POIFIDH & LAOYIBUEADSY

Conbevew o x|
Model Tods

Lobels & Atutes

ppicaton

N -]

Property Value
> Placement [(0,000,001,00):000°; (0.00 mm 00...
Label shaft6_holder
2
k
X
View /\ pata Fo stertpage @ iy umamed: 1+ 8

Touched, Intemal name: shafts_holder O cAD~ 99,11 mmx 55,10 mm

_images/Tutorial_2.1.png
Fs FreecaD 018 -

Fle it View Toos Moco Windous Hep
(1 =g

OWaE X EES -2
N9 - DOITHTIDH % 00 0D €Ep O +—

Combo View
Model Tasks DOCUMENTS
Labels & Attributes
Application
Recent files
Tip: Adjust the number of recent files to be shown here in menu Edit -> Preferences -> General -> Size of recent fle list
Examples
) vahk
ArchDetail FCStd DrawingExample.F EngineBlock FCStd FemCalculixCantil FemCalculixCantil FemCalculixCantil ignExampl R fieinp 65
219Kb cstd 65Kb ever2D.FCStd everdD.FCStd ever3D_newSolver. i
250Kb 84Kb. 108Kb FCstd 37Kb. mKh
134Kb
Schenkel.stp
576Kb
View /\ Data o stertpage B

_images/Tutorial_2.2.png
Fs FreecaD 018 -
Fle Edt View Tooks Maco Windows Hep

9 = > o =
D@as 460 N (1 =14
~
vae- @@@@@@@% €T +=
Combo View
Model Tasks
Labels & Attributes
Application
Recent files
@ weo Tip: Adjust the number of recent files to be shown here in menu Edit -> Preferences > General > Size of recent il list
Examples

) vahk

ArchDetail FCStd FemCalculixCantil FemCalculixCantil FemCalculixCantil ignExampl R fieinp 65

219Kb ever2D.FCStd everdD.FCStd ever3D_newSolver. i

84Kb. 108Kb FCstd 37Kb. mKh
134Kb

Schenkel.stp

576Kb
View /\ Data o stertpage B

_images/Tutorial_1.8.png
=

Fecha de modificacién | Tipo,

Ningtin elemento coincide con el criterio de biisqueda.

® | | P Buscaren3DModels

Tamario

Capet: oVl

_images/Tutorial_1.9.png
Fis FreecaD

You export shafts_holder in

X

30 Models

_images/Tutorial_2.5.png
Fs FreecaD 018 - X
Fle Edt View Toolk Macro MachatronicParts Windows Help
B n 0902 N[(Ewe= | @H ,>
M‘l. ®ﬁ®@8®®% omia & “P @ <
Model \rm
b
o
x v

o stertpage £ [t unnamed: 1=

O CAD¥ 99,11 mmx 55,10 mm

_images/Tutorial_2.6.png
Fs FreecaD 018

Fie Edit View Tools Macro MachatronicParts Windows Help

was s

Model | Tasks

Labels & Atrbutes
ippication
¥ @ Unnamed

B fiter_holder

NB_SEB1SA_block

@ NB_SEB15A

> 1 bearing idipulley_m3
@ idler_tensioner

> 1 d9T2bolt washer m3

> g3
W leadscrew nut
W tensioner_holder

> 1 d912bolt washer_m3001
B sluprofwisi 54

> 1 d9T2bolt washer mt

> 1 d912bolt washer_ma001

> 1 nematd_pulley_set
% nematd_motorholder

Property Value

O6-7-2 R [Ewee -/ @M=D
A9 DPDIBIB S oh 0L JOIBUADSY T <CA

Fo stertpage @ iy umamed: 1+ 8

O CAD~ 49351 mmx 27435 mm

_images/Tutorial_2.3.png
Fs FreecaD 018 -
Fle Edt View Tooks Macro Machatonic Parts Windows Help

[Osacsiscms-o- 2R @ < QWD
na®- @@@@mm%@:‘ & DS

Combo View
Model Tasks DOCUMENTS
Labels & Attributes
Application
Recent files
Tip: Adjust the number of recent files to be shown here in menu Edit -> Preferences -> General -> Size of recent fle list
Examples
) vahk
ArchDetail FCStd DrawingExample.F EngineBlock FCStd FemCalculixCantil FemCalculixCantil FemCalculixCantil ignExampl R fieinp 65
219Kb cstd 65Kb ever2D.FCStd everdD.FCStd ever3D_newSolver. i
250Kb 84Kb. 108Kb FCstd 37Kb. mKh
134Kb
Schenkel.stp
576Kb
View /\ Data o stertpage B

_images/Tutorial_2.4.png
Fs FreecaD 018

was s 00

le Edit View Tools Macro Machatronic Parts

=»

409 DOIHTIDH &

409U ~DPSY

Combo View

ax

Model | Tasks

Lobels & Atbutes
Application
@ Unnamed

Property Value

Top

o stertpage @ R uonamed: 1

0 cAD~ 745mmx 4,14 mm

_images/Tutorial_2.8.png
=

Fecha de modificacién | Tipo,

Ningtin elemento coincide con el criterio de biisqueda.

® | | P Buscaren3DModels

Tamario

Capet: oVl

_images/Tutorial_2.9.png
P FreeCAD X

You export filter_holderin 30 Models

_images/Tutorial_2.7.png
Fs FreecaD 018

Fie Edit View Tools Macro MachatronicParts Windows Help

@& o 00 -2- N [Ewee | @HE=D
NQ‘ ®ﬁ®@@®®\ R 40 A9IVUS DS T

oo | Tain
Labels & Attributes ~
v @ Unnamed
s ‘ 1
& NB_SEB15A_block
W filter_bolt

NB_SEB15A

> 1 bearing idlpulley_m3
B idle tensioner

> 1 d9T2bolt washer m3

> g3
B leadscrew nut
& tensioner_holder

> 1 d912bolt washer_m3001
B sluprofwisi 54

> 1 d9T2bolt washer mt

> 1 d912bolt washer_ma001

> 1 nematd_pulley_set

2 nemed motormolder .
broperty Vatue
> Placement _ [(0000001001:000°; 000mm 00..
bl fite_holder
:
k
.
Vew /\ oate Fosurtpae 0 R umaned: 1= 8
Valid, Internal name: filter_holder O cAD~ 493,51 mmx 274,35 mm

_images/bracket_30x30_m6.png

_images/bracket_30x30_m6_rail15.png

_images/UML_simplificado.jpg
